Skip to main content

Xanthan Gum-Based Drug Delivery Systems for Respiratory Diseases

  • Chapter
  • First Online:
Natural Polymeric Materials based Drug Delivery Systems in Lung Diseases

Abstract

Respiratory diseases such as acute respiratory syndrome (ARDS), asthma, lung cancer, and chronic obstructive pulmonary disease (COPD) have been associated with pulmonary inflammation. These illnesses are becoming a serious public health concern and a financial burden on the aging population. Anti-inflammatory medicines in different dosage forms are used to treat these diseases that minimize the risk of pulmonary inflammation. However, without the assistance of a suitable and potential drug carrier, which can transport the drug to the site of pharmacological action without losing the active component, is always a challenge for research scientists. Different drug carrier systems have been created to increase the efficacy in drug delivery systems, avoiding drug degradation during transit, avoiding harmful effects from fast release, and improved medication delivery to target areas. There has been a paradigm shift toward natural polymers because of the adverse effects of synthetic polymers. Nowadays, natural polymers are preferred as drug carriers over others due to various characteristics such as biocompatibility, nontoxicity, and biodegradability. Xanthan gum (XG) is a natural microbial polysaccharide having all the above-mentioned characteristics and can be excreted directly by the kidney or can be degraded into smaller molecules. This natural excipient has been investigated as a matrix for solid dosage forms (tablets, capsules), nanoparticles, microparticles, hydrogels, buccal/transdermal patches, and tissue engineering scaffolds with varying degrees of efficacy and distinctive rheological features. This chapter will provide recent updates about the role of xanthan gum-based drug delivery systems for respiratory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Elella MH, Sabaa MW, ElHafeez EA, Mohamed RR (2019) Crystal violet dye removal using crosslinked grafted xanthan gum. Int J Biol Macromol 137:1086–1101

    Article  CAS  Google Scholar 

  • Ahmed J, Ramaswamy HS (2004) Effect of high-hydrostatic pressure and concentration on rheological characteristics of xanthan gum. Food Hydrocoll 18(3):367–373

    Article  CAS  Google Scholar 

  • Badwaik HR, Giri TK, Nakhate KT, Kashyap P, Tripathi DK (2013) Xanthan gum and its derivatives as a potential bio-polymeric carrier for drug delivery system. Curr Drug Deliv 10(5):587–600

    Article  CAS  Google Scholar 

  • Bhattacharya SS, Mazahir F, Banerjee S, Verma A, Ghosh A (2013) Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres. Carbohydr Polym 98(1):64–72

    Article  CAS  Google Scholar 

  • Cummings KW, Bhalla S (2015) Pulmonary vascular diseases. Clin Chest Med 36(2):235–248

    Article  Google Scholar 

  • Deshmukh VN, Jadhav JK, Masirkar VJ, Sakarkar DM (2009) Formulation, optimization and evaluation of controlled release alginate microspheres using synergy gum blends. Res J Pharm Technol 2(2):324–327

    CAS  Google Scholar 

  • Dzionek A, WojcieszyÅ„ska D, Guzik U (2022) Use of xanthan gum for whole cell immobilization and its impact in bioremediation—a review. Bioresour Technol 351:126918

    Article  CAS  Google Scholar 

  • Elhissi A (2017) Liposomes for pulmonary drug delivery: the role of formulation and inhalation device design. Curr Pharm Des 23(3):362–372

    Article  CAS  Google Scholar 

  • Farzi M, Saffari MM, Emam-Djomeh Z, Mohammadifar MA (2011) Effect of ultrasonic treatment on the rheological properties and particle size of gum tragacanth dispersions from different species: ultrasonic effects on gum tragacanth dispersions. Int J Food Sci Technol 46(4):849–854

    Article  CAS  Google Scholar 

  • Fernandez-Piñeiro I, Alvarez-Trabado J, Márquez J, Badiola I, Sanchez A (2018) Xanthan gum-functionalised span nanoparticles for gene targeting to endothelial cells. Colloids Surf B Biointerfaces 170:411–420

    Article  Google Scholar 

  • Furushima D, Nishimura T, Takuma N, Iketani R, Mizuno T, Matsui Y, Yamaguchi T (2019) Prevention of acute upper respiratory infections by consumption of catechins in healthcare workers: a randomized, placebo-controlled trial. Nutrients 12(1):4

    Article  Google Scholar 

  • Gomez CG, Rinaudo M, Villar MA (2007) Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohydr Polym 67(3):296–304

    Article  CAS  Google Scholar 

  • Gulati N, Dua K, Dureja H (2021) Role of chitosan based nanomedicines in the treatment of chronic respiratory diseases. Int J Biol Macromol 185:20–30

    Article  CAS  Google Scholar 

  • Hanna DH, Saad GR (2019) Encapsulation of ciprofloxacin within modified xanthan gum- chitosan based hydrogel for drug delivery. Bioorg Chem 84:115–124

    Article  CAS  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007

    Article  CAS  Google Scholar 

  • Im SH, Jung HT, Ho MJ, Lee JE, Kim HT, Kim DY, Lee HC, Choi YS, Kang MJ (2020) Montelukast nanocrystals for transdermal delivery with improved chemical stability. Pharmaceutics 12(1):18

    Article  CAS  Google Scholar 

  • Kandukoori D, Kartheek P, Srujana K, Sravanthi K, Swathi C, Naresh M (n.d.) Formulation and in-vitro evaluation of floating matrix tablets of Cephalexin. Int Res J Pharm App Sci:201244–201256

    Google Scholar 

  • Kang M, Oderinde O, Liu S, Huang Q, Ma W, Yao F et al (2019) Characterization of Xanthan gum-based hydrogel with Fe3+ ions coordination and its reversible sol-gel conversion. Carbohydr Polym 203:139–147

    Article  CAS  Google Scholar 

  • Kumar G, Virmani T, Pathak K, Alhalmi A (2022 Apr) A revolutionary blueprint for mitigation of hypertension via nanoemulsion. Biomed Res Int 14(2022):e4109874

    Google Scholar 

  • Li C, Wang Y, Du Y, Qian M, Jiang H, Wang J et al (2018. [cited 2022 Jun 14]) Side effects-avoided theranostics achieved by biodegradable magnetic silica-sealed mesoporous polymer-drug with ultralow leakage. Biomaterials. https://doi.org/10.1016/j.biomaterials.2018.09.039

  • Liu S, Zhang H, Fang B, Lu Y, Qiu X, Zhai W (2017) Carboxymethyl hydroxypropyl xanthan gum and its rheological properties. Drill Fluid Complet Fluid 34:106–110. and 116

    CAS  Google Scholar 

  • Lu MF, Woodward L, Borodkin S (1991) Xanthan Gum and alginate based controlled release theophylline formulations. Drug Dev Ind Pharm 17(14):1987–2004

    Article  CAS  Google Scholar 

  • Ma YH, Yang J, Li B, Jiang YW, Lu X, Chen Z (2016) Biodegradable and injectable polymer–liposome hydrogel: a promising cell carrier. Polym Chem 7(11):2037–2044

    Article  CAS  Google Scholar 

  • Malik NS, Ahmad M, Minhas MU, Tulain R, Barkat K, Khalid I et al (2020) Chitosan/Xanthan gum based hydrogels as potential carrier for an antiviral drug: fabrication, characterization, and safety evaluation. Front Chem:8. https://doi.org/10.3389/fchem.2020.00050

  • Manca ML, Manconi M, Valenti D, Lai F, Loy G, Matricardi P, Fadda AM (2012) Liposomes coated with chitosan-xanthan gum (chitosomes) as potential carriers for pulmonary delivery of rifampicin. J Pharm Sci 101(2):566–575

    Article  CAS  Google Scholar 

  • Mukherjee PK, Esper F, Buchheit K, Arters K, Adkins I, Ghannoum MA, Salata RA (2017) Randomized, double-blind, placebo-controlled clinical trial to assess the safety and effectiveness of a novel dual-action oral topical formulation against upper respiratory infections. BMC Infect Dis 17(1):74

    Article  Google Scholar 

  • Niethamer TK, Stabler CT, Leach JP, Zepp JA, Morley MP, Babu A, Zhou S, Morrisey EE (2020) Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury. elife 9:e53072

    Article  CAS  Google Scholar 

  • Nikjoo D, van der Zwaan I, Brülls M, Tehler U, Frenning G (2021) Hyaluronic acid hydrogels for controlled pulmonary drug delivery—a particle engineering approach. Pharmaceutics 13(11):1878

    Article  CAS  Google Scholar 

  • Panchal R, Patel H, Patel V, Joshi P, Parikh A (2012) Formulation and evaluation of montelukast sodium—chitosan based spray dried microspheres for pulmonary drug delivery. J Pharm Bioallied Sci 4(Suppl. 1):S110–S111

    Article  Google Scholar 

  • Paranjpe M, Müller-Goymann CC (2014) Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci 15(4):5852–5873

    Article  CAS  Google Scholar 

  • Patel J, Maji B, Narayana Moorthy NSH, Maiti S (2020) Xanthan gum derivatives: review of synthesis, properties and diverse applications. RSC Adv 10(45):27103–27136

    Article  CAS  Google Scholar 

  • Paul A, .Fathima KM, Nair SC. Intra nasal in situ gelling system of lamotrigine using ion activated mucoadhesive polymer. Open Med Chem J 2017;11:222–244

    Article  CAS  Google Scholar 

  • Petri DFS (2015) Xanthan gum: a versatile biopolymer for biomedical and technological applications. J Appl Polym Sci 132(23)

    Google Scholar 

  • Pooja D, Panyaram S, Kulhari H, Rachamalla SS, Sistla R (2014) Xanthan gum stabilized gold nanoparticles: characterization, biocompatibility, stability and cytotoxicity. Carbohydr Polym 110:1–9

    Article  CAS  Google Scholar 

  • Popa N, Novac O, Profire L, Lupusoru CE, Popa MI (2010) Hydrogels based on chitosan-xanthan for controlled release of theophylline. J Mater Sci Mater Med 21(4):1241–1248

    Article  CAS  Google Scholar 

  • Qian XL, Su JZ, Wu WH, Niu CM (2007) Aqueous solution viscosity properties of hydrophobically modified xanthan gum HMXG-C8. Oilfield Chem 24(154–7):162

    Google Scholar 

  • Riaz T, Iqbal MW, Jiang B, Chen J (2021) A review of the enzymatic, physical, and chemical modification techniques of xanthan gum. Int J Biol Macromol 186:472–489

    Article  CAS  Google Scholar 

  • Samudre S, Tekade A, Thorve K, Jamodkar A, Parashar G, Chaudhari N (2016) Xanthan Gum coated mucoadhesive liposomes for efficient nose to brain delivery of curcumin. Drug Deliv 06:1–1

    Google Scholar 

  • Sharma P, Sharma S, Khokra S, Sahu RK, Jangde R, Singh J (2011) Formulation, development and evaluation of sustained release matrix tablets containing salbutamol sulphate. Pharmacologyonline 2:1197–1203

    Google Scholar 

  • Sherafudeen SP, Vasantha PV (2015) Development and evaluation of in situ nasal gel formulations of loratadine. Res Pharm Sci 10(6):466–476

    Google Scholar 

  • Shrivastava A (2021) Formulation and evaluation of sustained release matrix tablets of aceclofenac. Borneo J Pharm 4:99–109

    Article  Google Scholar 

  • Shukla SD, Swaroop Vanka K, Chavelier A, Shastri MD, Tambuwala MM, Bakshi HA, et al. Chapter 1: Chronic respiratory diseases: an introduction and need for novel drug delivery approaches. In: Dua K, Hansbro PM, Wadhwa R, Haghi M, Pont LG, Williams KA, editors. Targeting chronic inflammatory lung diseases using advanced drug delivery systems [Internet]. Academic Press; 2020 [cited 2022 Jun 14]. p. 1–31. Available from: https://www.sciencedirect.com/science/article/pii/B9780128206584000017

  • Srivastava R, Srivastava S, Singh SP (2017) Thermoreversible in-situ nasal gel formulations and their pharmaceutical evaluation for the treatment of allergic rhinitis containing extracts of Moringa olifera and Embelica ribes. Int J Appl Pharm 9(6):16

    Article  CAS  Google Scholar 

  • Trucillo P (2021) Drug carriers: classification, administration, release profiles, and industrial approach. PRO 9(3):470

    CAS  Google Scholar 

  • ud Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 12:7291–7309

    Article  CAS  Google Scholar 

  • Vendruscolo CW, Andreazza IF, Ganter JLMS, Ferrero C, Bresolin TMB (2005) Xanthan and galactomannan (from M. scabrella) matrix tablets for oral controlled delivery of theophylline. Int J Pharm 296(1–2):1–11

    Article  CAS  Google Scholar 

  • Virmani T, Gupta J (2017) Pharmaceutical applications of microspheres: an approach for the treatment of various diseases. Int J Pharm Sci Res 8:3252–3260

    CAS  Google Scholar 

  • Virmani T, Kumar G, Pathak K (2022) Non-aqueous nanoemulsions: an innovative lipid-based drug carrier [Internet]. Advancements in controlled drug delivery systems. IGI Global:134–158. Available from: https://www.igi-global.com/chapter/non-aqueous-nanoemulsions/www.igi-global.com/chapter/non-aqueous-nanoemulsions/300404 [cited 2022 Apr 19].

  • Vishwa B, Moin A, Gowda DV, Rizvi SMD, Hegazy WAH, Abu Lila AS, Khafagy ES, Allam AN (2021) Pulmonary targeting of inhalable moxifloxacin microspheres for effective management of tuberculosis. Pharmaceutics 13(1):79

    Article  CAS  Google Scholar 

  • Wang X, Xin H, Zhu Y, Chen W, Tang E, Zhang J, Tan Y (2016a) Synthesis and characterization of modified xanthan gum using poly(maleic anhydride/1-octadecene). Colloid Polym Sci 294(8):1333–1341

    Article  CAS  Google Scholar 

  • Wang B, Han Y, Lin Q, Liu H, Shen C, Nan K, Chen H (2016b) In vitro and in vivo evaluation of xanthan gum–succinic anhydride hydrogels for the ionic strength-sensitive release of antibacterial agents. J Mater Chem B 4(10):1853–1861

    Article  CAS  Google Scholar 

  • Xiong X, Li M, Xie J, Jin Q, Xue B, Sun T (2013) Antioxidant activity of xanthan oligosaccharides prepared by different degradation methods. Carbohydr Polym 92(2):1166–1171

    Article  CAS  Google Scholar 

  • Yilma Z, Shibeshi A, Gebre-Mariam T (2015) Formulation and optimization of sustained release floating matrix tablets of salbutamol sulphate using Xanthan Gum and hydroxypropyl methylcellulose polymer blend. Int J Pharm Sci Res 6:1877–1892

    CAS  Google Scholar 

  • Zainab R, Akram M, Daniyal M, Riaz M (2019) Awareness and current therapeutics of asthma. Dose Response 17(3) 1559325819870900

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Virmani, T., Kumar, G., Virmani, R., Sharma, A., Pathak, K. (2023). Xanthan Gum-Based Drug Delivery Systems for Respiratory Diseases. In: Dureja, H., Adams, J., Löbenberg, R., Andreoli Pinto, T.d.J., Dua, K. (eds) Natural Polymeric Materials based Drug Delivery Systems in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-19-7656-8_16

Download citation

Publish with us

Policies and ethics