Skip to main content

Hereditary Breast Cancer and Pathogenic Germline Variants

  • Chapter
  • First Online:
Screening and Risk Reduction Strategies for Breast Cancer

Abstract

Response to standard breast cancer therapies is variable and unpredictable prompting a shift in focus with design of multigene panels for more accurate monitoring and detection of malignant disease and prediction of response to treatment. More than 200 gene panels have been developed by academic and diagnostic laboratories relating to a variety of malignancies including breast cancer. After more than 25 years since identification of BRCA1 [1, 2] and BRCA2 [3–5] genes and their association with hereditary breast cancer (HBC) other driver genes predisposing to HBC risk such as TP53, CHEK2, PTEN, ATM, PALB2 amongst others have been widely linked in different ethnic groups. In the past decade, improved sequencing technologies and advanced algorithms to detect and stratify genomic variants have helped identify specific germline variants that are confirmed or likely pathogenic and positively contribute to diagnosis and treatment of HBC. A hallmark of breast cancers is their heterogeneous nature, and it is paramount to understand the biological and clinical significance of pathogenic germline variants (PGVs) in terms of risk level and the features of PGV-associated tumours. Genetic screening can potentially be employed for prevention of breast and other cancers together with management of disease among PGV carriers. This chapter reviews varying patterns of HBC among different ethnic populations and how genomic technology is continuing to reveal additional HBC predisposition genes. The potential role of pathogenic germline variants (PGVs) in HBC screening and prevention will be considered and how early detection might lead to improved treatment outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASI:

Allele-specific imbalance

DCIS:

Ductal carcinoma in situ

FDA:

Food and Drug Administration

HBC:

Hereditary breast cancer

HCR:

Hereditary Cancer Registry

HRD:

Homologous recombination deficiency

IFN:

Interferon

LOH:

Loss of heterozygosity

MHC:

Major Histocompatibility Complex

OMIM:

Online Mendelian Inheritance in Man

OR:

Odds ratio

pCR:

Pathological complete response

PGVs:

Pathogenic germline variants

PheWAS:

Phenome-wide association studies

RR:

Relative risk

SNPs:

Single nucleotide polymorphisms

SNV:

Single nucleotide variant

TILs:

Tumour infiltrating lymphocytes

References

  1. Hall JM, Lee MK, Newman B, et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990;250(4988):1684–9.

    Article  ADS  Google Scholar 

  2. Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71.

    Article  ADS  Google Scholar 

  3. Stratton MR, Ford D, Neuhasen S, et al. Familial male breast cancer is not linked to the BRCA1 locus on chromosome 17q. Nat Genet. 1994;7(1):103–7.

    Article  Google Scholar 

  4. Wooster R, Neuhausen SL, Mangion J, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science. 1994;265(5181):2088–90.

    Article  ADS  Google Scholar 

  5. Wooster R, Cleton-Jansen AM, Collins N, et al. Instability of short tandem repeats (microsatellites) in human cancers. Nat Genet. 1994;6(2):152–6.

    Article  Google Scholar 

  6. Malone KE, Daling JR, Thompson JD, et al. BRCA1 mutations and breast cancer in the general population. JAMA. 1998;279:922–9.

    Article  Google Scholar 

  7. Newman B, Mu H, Butler LM, et al. Frequency of breast cancer attributable to BRCA1 in a population-based series of American women. JAMA. 1998;279:915–21.

    Article  Google Scholar 

  8. Tonin P, Serova O, Lenoir G, et al. BRCA1 mutations in Ashkenazi Jewish women. Am J Hum Genet. 1995;57:189.

    Google Scholar 

  9. FitzGerald MG, MacDonald DJ, et al. BRCA1 mutations in Jewish and non-Jewish women with early-onset breast cancer. N Engl J Med. 1996;334:143–9.

    Article  Google Scholar 

  10. Inoue R, Fukutomi T, Ushijima T, et al. Germline mutation of BRCA1 in Japanese breast cancer families. Cancer Res. 1995;55:3521–4.

    Google Scholar 

  11. For US population BC stats—individual’s lifetime BC risk. https://seer.cancer.gov/explorer/application.html?site=55&data_type=6&graph_type=8&compareBy=sex&chk_sex_3=3&chk_sex_2=2&stat_type=10&race=1&hdn_age_range=300&advopt_precision=1&advopt_show_ci=on#graphArea.

  12. For UK. https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/risk-factors#heading-Zero.

  13. For India. http://cancerindia.org.in/cancer-statistics/.

  14. For Japan. https://ganjoho.jp/reg_stat/statistics/stat/cancer/14_breast.html.

  15. Breast Cancer Association Consortium. Breast cancer risk genes—association analysis in more than 113,000 women. N Engl J Med. 2021;384(5):428–39.

    Article  Google Scholar 

  16. Hu C, Hart SN, Gnanaolivu R, et al. A population-based study of genes previously implicated in breast cancer. N Engl J Med. 2021;384(5):440–51.

    Article  Google Scholar 

  17. Narod SA. Which genes for hereditary breast cancer? N Engl J Med. 2021;384(5):471–3.

    Article  Google Scholar 

  18. Breast Cancer Association Consortium. Pathology of tumors associated with pathogenic germline variants in 9 breast cancer susceptibility genes. JAMA Oncol. 2022;8(3):e216744.

    Article  Google Scholar 

  19. Lowry KP, Geuzinge HA, Stout NK, et al. Breast cancer screening strategies for women with ATM, CHEK2, and PALB2 pathogenic variants: a comparative modeling analysis. JAMA Oncol. 2022;8(4):587–96.

    Article  Google Scholar 

  20. Domchek SM, Yao S, Chen F, et al. Comparison of the prevalence of pathogenic variants in cancer susceptibility genes in black women and non-Hispanic white women with breast cancer in the United States. JAMA Oncol. 2021;7(7):1045–50.

    Article  Google Scholar 

  21. Yadav S, Hu C, Hart SN, et al. Evaluation of Germline genetic testing criteria in a hospital-based series of women with breast cancer. J Clin Oncol. 2020;38(13):1409–18.

    Article  Google Scholar 

  22. Kwong A, Shin VY, Chen J, et al. Germline mutation in 1338 BRCA-negative Chinese hereditary breast and/or ovarian cancer patients: clinical testing with a multigene test panel. J Mol Diagn. 2020;22(4):544–54.

    Article  Google Scholar 

  23. Bhaskaran SP, Chandratre K, Gupta H, et al. Germline variation in BRCA1/2 is highly ethnic-specific: evidence from over 30,000 Chinese hereditary breast and ovarian cancer patients. Int J Cancer. 2019;145(4):962–73.

    Article  Google Scholar 

  24. Hauke J, Horvath J, Groß E, et al. Gene panel testing of 5589 BRCA1/2-negative index patients with breast cancer in a routine diagnostic setting: results of the German consortium for hereditary breast and ovarian cancer. Cancer Med. 2018;7(4):1349–58.

    Article  Google Scholar 

  25. Weitzel JN, Neuhausen SL, Adamson A, et al. Pathogenic and likely pathogenic variants in PALB2, CHEK2, and other known breast cancer susceptibility genes among 1054 BRCA-negative Hispanics with breast cancer. Cancer. 2019;125(16):2829–36.

    Article  Google Scholar 

  26. Inagaki-Kawata Y, Yoshida K, Kawaguchi-Sakita N, et al. Genetic and clinical landscape of breast cancers with germline BRCA1/2 variants. Commun Biol. 2020;3(1):578.

    Article  Google Scholar 

  27. Liu X, Takata S, Ashikawa K, et al. Prevalence and Spectrum of pathogenic Germline variants in Japanese patients with early-onset colorectal, breast, and prostate cancer. JCO Precis Oncol. 2020;4:183–91.

    Article  Google Scholar 

  28. Momozawa Y, Iwasaki Y, Parsons MT, et al. Germline pathogenic variants of 11 breast cancer genes in 7,051 Japanese patients and 11,241 controls. Nat Commun. 2018;9(1):4083.

    Article  ADS  Google Scholar 

  29. Huang KL, Mashl RJ, Wu Y, et al. Pathogenic Germline variants in 10,389 adult cancers. Cell. 2018;173(2):355–370.e14.

    Article  Google Scholar 

  30. Chian J, Sinha S, Qin Z, Wang SM. BRCA1 and BRCA2 variation in Taiwanese general population and the cancer cohort. Front Mol Biosci. 2021;8:685174.

    Article  Google Scholar 

  31. Sun J, Meng H, Yao L, Lv M, et al. Germline mutations in cancer susceptibility genes in a large series of unselected breast cancer patients. Clin Cancer Res. 2017;23(20):6113–9.

    Article  Google Scholar 

  32. Li S, Silvestri V, Leslie G, et al. Cancer risks associated with BRCA1 and BRCA2 pathogenic variants. J Clin Oncol. 2022;40(14):1529–41.

    Article  Google Scholar 

  33. Matsumura K, Kallioniemi A, Kallioniemi O, et al. Deletion of chromosome 17p loci in breast cancer cells detected by fluorescence in situ hybridization. Cancer Res. 1992;52(12):3474–7.

    Google Scholar 

  34. Bièche I, Lidereau R. Loss of heterozygosity at 13q14 correlates with RB1 gene underexpression in human breast cancer. Mol Carcinog. 2000;29(3):151–8.

    Article  Google Scholar 

  35. Momozawa Y, Sasai R, Usui Y, et al. Expansion of cancer risk profile for BRCA1 and BRCA2 pathogenic variants. JAMA Oncol. 2022;8(6):871–8. https://doi.org/10.1001/jamaoncol.2022.0476.

    Article  Google Scholar 

  36. Zeng C, Bastarache LA, Tao R, et al. Association of Pathogenic Variants in hereditary cancer genes with multiple diseases. JAMA Oncol. 2022;8(6):835–44. https://doi.org/10.1001/jamaoncol.2022.0373.

    Article  Google Scholar 

  37. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68(4):820–3.

    Article  ADS  Google Scholar 

  38. Carter H, Marty R, Hofree M, et al. Interaction landscape of inherited polymorphisms with somatic events in cancer. Cancer Discov. 2017;7(4):410–23.

    Article  Google Scholar 

  39. Waszak SM, Tiao G, Zhu B, et al. Germline determinants of the somatic mutation landscape in 2,642 cancer genomes. bioRxiv. 2017. https://doi.org/10.1101/208330.

  40. Nik-Zainal S, Wedge DC, Alexandrov LB, et al. Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer. Nat Genet. 2014;46(5):487–91.

    Article  Google Scholar 

  41. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82–93.

    Article  ADS  Google Scholar 

  42. Nik-Zainal S, Davies H, Staaf J, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534(7605):47–54.

    Article  ADS  Google Scholar 

  43. Dziadkowiec KN, Gąsiorowska E, Nowak-Markwitz E, Jankowska A. PARP inhibitors: review of mechanisms of action and BRCA1/2 mutation targeting. Prz Menopauzalny. 2016;15(4):215–9.

    Google Scholar 

  44. Dunning AM, Michailidou K, Kuchenbaecker KB, et al. Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nat Genet. 2016;48(4):374–86.

    Article  Google Scholar 

  45. Chatrath A, Przanowska R, Kiran S, et al. The pan-cancer landscape of prognostic germline variants in 10,582 patients. Genome Med. 2020;12(1):15.

    Article  Google Scholar 

  46. Yu CC, Qiu W, Juang CS, et al. Mutant allele specific imbalance in oncogenes with copy number alterations: occurrence, mechanisms, and potential clinical implications. Cancer Lett. 2017;384:86–93.

    Article  Google Scholar 

  47. Puzone R, Pfeffer U. SNP variants at the MAP 3K1/SETD9 locus 5q11.2 associate with somatic PIK3CA variants in breast cancers. Eur J Hum Genet. 2017;25(3):384–7.

    Article  Google Scholar 

  48. Stewart-Ornstein J, Iwamoto Y, Miller MA, et al. p53 dynamics vary between tissues and are linked with radiation sensitivity. Nat Commun. 2021;12(1):898.

    Article  ADS  Google Scholar 

  49. Stracquadanio G, Wang X, Wallace MD, et al. The importance of p53 pathway genetics in inherited and somatic cancer genomes. Nat Rev Cancer. 2016;16(4):251–65.

    Article  Google Scholar 

  50. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  ADS  Google Scholar 

  51. Zhang P, Kitchen-Smith I, Xiong L, et al. Germline and somatic genetic variants in the p53 pathway interact to affect cancer risk, progression, and drug response. Cancer Res. 2021;81(7):1667–80.

    Article  Google Scholar 

  52. Huang H, Hu J, Maryam A, et al. Defining super-enhancer landscape in triple-negative breast cancer by multiomic profiling. Nat Commun. 2021;12(1):2242.

    Article  ADS  Google Scholar 

  53. Glodzik D, Morganella S, Davies H, et al. A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers. Nat Genet. 2017;49(3):341–8. Erratum in: Nat Genet. 2017;49(11):1661.

    Article  Google Scholar 

  54. Poggio F, Bruzzone M, Ceppi M, et al. Platinum-based neoadjuvant chemotherapy in triple-negative breast cancer: a systematic review and meta-analysis. Ann Oncol. 2018;29(7):1497–508.

    Article  Google Scholar 

  55. Hahnen E, Lederer B, Hauke J, et al. Germline mutation status, pathological complete response, and disease-free survival in triple-negative breast cancer: secondary analysis of the GeparSixto randomized clinical trial. JAMA Oncol. 2017;3(10):1378–85.

    Article  Google Scholar 

  56. Masuda N, Bando H, Yamanaka T, et al. Eribulin-based neoadjuvant chemotherapy for triple-negative breast cancer patients stratified by homologous recombination deficiency status: a multicenter randomized phase II clinical trial. Breast Cancer Res Treat. 2021;188(1):117–31.

    Article  Google Scholar 

  57. Satyananda V, Oshi M, Endo I, Takabe K. High BRCA2 gene expression is associated with aggressive and highly proliferative breast cancer. Ann Surg Oncol. 2021;28(12):7356–65.

    Article  Google Scholar 

  58. Wu R, Patel A, Tokumaru Y, et al. High RAD51 gene expression is associated with aggressive biology and with poor survival in breast cancer. Breast Cancer Res Treat. 2022;193(1):49–63. https://doi.org/10.1007/s10549-022-06552-0.

    Article  Google Scholar 

  59. Llop-Guevara A, Loibl S, Villacampa G, et al. Association of RAD51 with homologous recombination deficiency (HRD) and clinical outcomes in untreated triple-negative breast cancer (TNBC): analysis of the GeparSixto randomized clinical trial. Ann Oncol. 2021;32(12):1590–6.

    Article  Google Scholar 

  60. Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.

    Article  ADS  Google Scholar 

  61. Pommier Y, O’Connor MJ, de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med. 2016;8:362ps17.

    Article  Google Scholar 

  62. Pilié PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 2019;16(2):81–104.

    Article  Google Scholar 

  63. Tutt A, Robson M, Garber JE, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376:235–44.

    Article  Google Scholar 

  64. Kaufman B, Shapira-Frommer R, Schmutzler RK, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33:244–50.

    Article  Google Scholar 

  65. Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–33. Erratum in: N Engl J Med. 377(17):1700.

    Article  Google Scholar 

  66. Litton JK, Rugo HS, Ettl J, et al. Talazoparib in patients with advanced breast cancer and a Germline BRCA mutation. N Engl J Med. 2018;379(8):753–63.

    Article  Google Scholar 

  67. Tutt ANJ, Garber JE, Kaufman B, et al. Adjuvant Olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med. 2021;384(25):2394–405.

    Article  Google Scholar 

  68. Domchek SM, Postel-Vinay S, Im SA, et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study. Lancet Oncol. 2020;21(9):1155–64.

    Article  Google Scholar 

  69. Zhang Y, Manjunath M, Yan J, et al. The cancer-associated genetic variant Rs3903072 modulates immune cells in the tumor microenvironment. Front Genet. 2019;10:754.

    Article  Google Scholar 

  70. Abana CO, Bingham BS, Cho JH, et al. IL-6 variant is associated with metastasis in breast cancer patients. PLoS One. 2017;12(7):e0181725.

    Article  Google Scholar 

  71. Harun-Or-Roshid M, Ali MB, Jesmin MMNH. Statistical meta-analysis to investigate the association between the Interleukin-6 (IL-6) gene polymorphisms and cancer risk. PLoS One. 2021;16(3):e0247055.

    Article  Google Scholar 

  72. Schmid P, Cortes J, Pusztai L, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382(9):810–21.

    Article  Google Scholar 

  73. Sayaman RW, Saad M, Thorsson V, Hu D, et al. Germline genetic contribution to the immune landscape of cancer. Immunity. 2021;54(2):367–386.e8.

    Article  Google Scholar 

  74. Stanton SE, Adams S, Disis ML. Variation in the incidence and magnitude of tumour-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol. 2016;2(10):1354–60.

    Article  Google Scholar 

  75. Loi S, Drubay D, Adams S, et al. Tumour-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol. 2019;37(7):559–69.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Toi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Velaga, R., Toi, M., Kawaguchi-Sakita, N., Benson, J.R., Senda, N. (2023). Hereditary Breast Cancer and Pathogenic Germline Variants. In: Toi, M. (eds) Screening and Risk Reduction Strategies for Breast Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-19-7630-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7630-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7629-2

  • Online ISBN: 978-981-19-7630-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics