Skip to main content

Biomechanics of the Lumbar Spine

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology

Abstract

Knowledge of lumbar spine morphology and functional anatomy is essential in understanding the relationship between the structures and spinal activity. The shape of the normal spinal curvature in the sagittal plane is essential for maintaining an erect, vertical, and bipedal position. The lumbar spine plays a key role in supporting the upper spine and allowing range of motions. Its main functions include maintaining the equilibrium of the upper spine, providing trunk stability, neural protection, biodynamics, and haematopoiesis. The pelvis also shares an intrinsic anatomic relationship with the lumbar spine and is equally important in maintaining an upright posture. As the centre of gravity changes with body position, the pelvis tilts by rotating around the femoral heads, thus compensating for the imbalance by maintaining the gravity line between the two feet. Problems such as pain or instability may arise in the lumbar spine during performance of activities of daily living, through either improper posture or injury. Fusion is the current gold standard treatment for many such conditions, however, it alters the normal biomechanics of the spine. Various makes and types of implants are used in the lumbar spine. A sound knowledge of the biomechanics is therefore necessary to enable a better understanding of the implants used in the lumbar spine to rectify the clinical problems we face. This chapter discusses the rationale behind the implants for usage in the lumbar spine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Louis R. Functional anatomy of the lumbar spine. In: Brock M, Mayer HM, Weigel K, editors. The artificial disc. Berlin/Heidelberg: Springer; 1991. p. 3–11.

    Chapter  Google Scholar 

  2. Laouissat F, Sebaaly A, Gehrchen M, Roussouly P. Classification of normal sagittal spine alignment: refounding the Roussouly classification. Eur Spine J. 2018;27(8):2002–11.

    Article  PubMed  Google Scholar 

  3. Roussouly P, Pinheiro-Franco JL. Sagittal parameters of the spine: biomechanical approach. Eur Spine J. 2011;20(Suppl 5):578–85.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Junghanns H. Die Zwischenwirbelscheiben in Rontegenbild. Fortschr Roentgenstr. 1931;43:275–305.

    Google Scholar 

  5. Grobler LJ, Robertson PA, Novotny JE, Pope MH. Etiology of spondylolisthesis. Assessment of the role played by lumbar facet joint morphology. Spine. 1993;18(1):80–91.

    Article  CAS  PubMed  Google Scholar 

  6. White AA, Panjabi MM. Clinical biomechanics of the spine. 2nd ed. Philadelphia: J.B. Lippincott; 1990.

    Google Scholar 

  7. Adams MA, Bogduk N. The biomechanics of back pain. Edinburgh: Churchill Livingstone; 2002. p. 121–3.

    Google Scholar 

  8. Cyron BM, Hutton WC. The tensile strength of the capsular ligaments of the apophyseal joints. J Anat. 1981;132:145–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wong DA, Transfeldt E. Macnab’s backache. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  10. Panjabi MM, Goel VK, Takata K. Physiologic strains in the lumbar spinal ligaments. Spine. 1982;7:192–203.

    Article  CAS  PubMed  Google Scholar 

  11. Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances A Jr. Biomechanical properties of human lumbar spine ligaments. J Biomech. 1992;25(11):1351–6.

    Article  CAS  PubMed  Google Scholar 

  12. Tkaczuk H. Tensile properties of the human lumbar annulus fibrosus. Thesis. Acta Orthop Scand. 1968;(Suppl 115):1.

    Google Scholar 

  13. Wilke HJ, Wolf S, Claes LE, Arand M, Wiesend A. Stability increase of the lumbar spine with different muscle groups: a biomechanical in vitro study. Spine. 1995;20(2):192–8.

    Article  CAS  PubMed  Google Scholar 

  14. Gardner-Morse MG, Stokes IAF. The effects of abdominal muscle coactivation on lumbar spine stability. Spine. 1998;23(1):86–92.

    Article  CAS  PubMed  Google Scholar 

  15. Kuo CS, Hu HT, Lin RM, Huang KY, Lin PC, Zhong ZC, Hseih ML. Biomechanical analysis of the lumbar spine on facet joint force and intradiscal pressure – a finite element study. BMC Musculoskelet Disord. 2010;11:151.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kraemer J. History and terminology. Intervertebral disk diseases – causes, diagnosis, treatment and prophylaxis, Ch 2. 3rd ed. New York: Thieme Medical and Scientific Publishers Private Ltd; 2009. p. 12.

    Google Scholar 

  17. Takahashi I, Kikuchi S, Sato K, Sato N. Mechanical load of the lumbar spine during forward bending motion of the trunk – a biomechanical study. Spine. 2006;31(1):18–23.

    Article  PubMed  Google Scholar 

  18. Nachemson A. Towards a better understanding of low-back pain: a review of the mechanics of the lumbar disc. Rheumatol Rehabil. 1975;14(3):129–43.

    Article  CAS  PubMed  Google Scholar 

  19. Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine. 1999;24(8):755–62.

    Article  CAS  PubMed  Google Scholar 

  20. Steffen T, Baramki HG, Rubin R, Antoniou J, Aebi M. Lumbar intradiscal pressure measured in the anterior and posterolateral annular regions during asymmetrical loading. Clin Biomech (Bristol, Avon). 1998;13(7):495–505.

    Article  PubMed  Google Scholar 

  21. Lovett RW. The mechanism of the normal spine and its relation to scoliosis. Boston Med Surg J. 1905;13:349–58.

    Article  Google Scholar 

  22. Choi SJ, Moon JW, Ryu D, Oh CH, Yoon SH. Range of motion according to the fusion level after lumbar spine fusion: a retrospective study. Nerve. 2018;4(2):55–9.

    Article  Google Scholar 

  23. Fujii R, Sakaura H, Mukai Y, Hosono N, Ishii T, Iwasaki M, Yoshikawa H, Sugamoto K. Kinematics of the lumbar spine in trunk rotation: in vivo three-dimensional analysis using magnetic resonance imagine. Eur Spine J. 2007;16:1867–74.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Steffen T, Rubin RK, Baramki HG, Antoniou J, Marchesi D, Aebi M. A new technique for measuring lumbar segment motion in vivo. Method, accuracy and preliminary results. Spine. 1997;22(2):156–66.

    Article  CAS  PubMed  Google Scholar 

  25. Gallagher S, Marras WS, Litsky AS, Burr D. An exploratory study of loading and morphometric factors associated with specific failure modes in fatigue testing of lumbar motion segments. Clin Biomech (Bristol, Avon). 2006;21(3):228–34.

    Article  PubMed  Google Scholar 

  26. Panjabi MM, Thibodeau LL, Crisco JJ 3rd, White AA 3rd. What constitutes spinal instability? Clin Neurosurg. 1988;34:313–39.

    CAS  PubMed  Google Scholar 

  27. Friberg O. Lumbar instability: a dynamic approach by traction-compression radiography. Spine. 1987;12(2):119–29.

    Article  CAS  PubMed  Google Scholar 

  28. Varlotta GP, Lefkowitz TR, Schweitzer M, Errico TJ, Spivak J, Bendo JA, Rybak L. The lumbar facet joint: a review of current knowledge: part 1: anatomy, biomechanics, and grading. Skelet Radiol. 2011;40(1):13–23.

    Article  Google Scholar 

  29. Adams MA, McNally DS, Dolan P. Stress distributions inside intervertebral discs: the effects of age and degeneration. J Bone Joint Surg Br. 1996;78:965–72.

    Article  CAS  PubMed  Google Scholar 

  30. St-Pierre GH, Jack A, Siddiqui MM, Henderson RL, Nataraj A. Nonfusion does not prevent adjacent segment disease: dynesys long-term outcomes with minimum five-year follow- up. Spine. 2016;41(3):265–73.

    Article  PubMed  Google Scholar 

  31. Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS 3rd, Cook SD. Effects of bone mineral density on pedicle screw fixation. Spine. 1994;19(21):2415–20.

    Article  CAS  PubMed  Google Scholar 

  32. Cho W, Cho SK, Wu C. The biomechanics of pedicle screw-based instrumentation. J Bone Joint Surg Br. 2010;92:1061–5.

    Article  CAS  PubMed  Google Scholar 

  33. Send WRD, Chou SM, Siddiqui SS, Oh JYL. Pedicle screw designs in spinal surgery. Spine. 2018;44(3):E144–9.

    Google Scholar 

  34. Shepherd DL, Alvi MA, Murphy ME, Kerezoudis P, Corl F, Hitchon PW, Nassr A, Bydon M. The cortical bone trajectory for lumbar spine fusion. Oper Tech Orthop. 2017;27:269–74.

    Article  Google Scholar 

  35. Rohlmann A, Calisse J, Bergmann G, Weber U. Internal spinal fixator stiffness has only a minor influence on stresses in the adjacent discs. Spine. 1999;24(12):1192–5.

    Article  CAS  PubMed  Google Scholar 

  36. Krag MH. Biomechanics of thoracolumbar spinal fixation: a review. Spine. 1991;16(Suppl 3):S84–99.

    Article  CAS  PubMed  Google Scholar 

  37. Mohammed N, Patra DP, Narayan V, Savardekar AR, Dossani RH, Bollam P, Bir S, Nanda A. A comparison of the techniques of direct pars interarticularis repairs for spondylolysis and low-grade spondylolisthesis: a meta-analysis. Neurosurg Focus. 2018;44(1):E10.

    Article  PubMed  Google Scholar 

  38. Lakshmanan P, Ahuja S, Lewis M, Howes J, Davies PR. Transsacral screw fixation for high-grade spondylolisthesis. Spine J. 2009;9(12):1024–9.

    Article  PubMed  Google Scholar 

  39. Collados-Maestre I, Lizaur-Utrilla A, Bas-Hermida T, Pastor-Fernandez E, Gil-Guillen V. Transdiscal screw versus pedicle screw fixation for high-grade L5-S1 isthmic spondylolisthesis in patients younger than 60 years: a case-control study. Eur Spine J. 2016;25:1806–12.

    Article  PubMed  Google Scholar 

  40. Yu BS, Zhuang XM, Zheng ZM, Li ZM, Wang TP, Lu WW. Biomechanical advantages of dual over single iliac screws in lumbo-iliac fixation construct. Eur Spine J. 2010;19:1121–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wu AM, Chen D, Chen CH, Li YZ, Tang L, Phan K, et al. The technique of S2-alar- iliac screw fixation: a literature review. AME Med J. 2017;2:179.

    Article  Google Scholar 

  42. Tai CL, Chen LH, Lee DM, Liu MY, Lai PL. Biomechanical comparison of different combinations of hook and screw in one spine motion unit – an experiment in porcine model. Musculoskelet Disord. 2014;15:197.

    Article  Google Scholar 

  43. Landi A. Interspinous posterior devices: what is the real surgical indication? World J Clin Cases. 2014;2(9):402–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cripton PA, Jain GM, Wittenberg RH, Nolte LP. Load-sharing characteristics of stabilized lumbar spine segments. Spine. 2000;25(2):170–9.

    Article  CAS  PubMed  Google Scholar 

  45. Wilke HJ, Kemmerich V, Claes LE, Arand M. Combined anteroposterior spinal fixation provides superior stabilisation to a single anterior or posterior procedure. J Bone Joint Surg Br. 2001;83(4):609–17.

    Article  CAS  PubMed  Google Scholar 

  46. Brantigan JW, Steffee AD. A carbon fibre implant to aid interbody fusion: two-year clinical results in the first 26 patients. Spine. 1993;18:2106–7.

    Article  CAS  PubMed  Google Scholar 

  47. Oxland T, Lund T. Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J. 2000;9(suppl 1):S95–S101.

    Article  PubMed  Google Scholar 

  48. Anjarwalla NK, Morcom RK, Fraser RD. Supplementary stabilisation with anterior lumbar intervertebral fusion – a radiologic review. Spine. 2006;31:1281–7.

    Article  PubMed  Google Scholar 

  49. Choi KC, Ryu KS, Lee SH, Kim YH, Lee SJ, Park CK. Biomechanical comparison of anterior lumbar interbody fusion: Stand-alone interbody cage versus interbody cage with pedicle screw fixation – a finite element analysis. BMC Musculoskelet Disord. 2013;14:220,1–9.

    Article  Google Scholar 

  50. Salzmann SN, Plais N, Shue J, Girardi FP. Lumbar disc replacement surgery – successes and obstacles to widespread adoption. Curr Rev Musculoskelet Med. 2017;10:153–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Aunoble S, Meyrat R, Al Sawad Y, Tournier C, Leijssen P, Le Huec JC. Hybrid constructs for two levels disc disease in lumbar spine. Eur Spine J. 2010;19:290–6.

    Article  PubMed  Google Scholar 

  52. Andrieu K, Allain J, Longis PM, Steib JP, Beaurain J, Delecrin J. Comparison between total disc replacement and hybrid construct at two lumbar levels with minimum follow- up of two years. Orthop Traumatol Surg Res. 2017;103(1):39–43.

    Article  CAS  PubMed  Google Scholar 

  53. Newton PO. Spinal growth tethering: indications and limits. Ann Transl Med. 2020;8(2):27.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijeet Ghoshal .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ghoshal, A., McCarthy, M.J.H. (2023). Biomechanics of the Lumbar Spine. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_115

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_115

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics