Skip to main content

Quantitative BAN Logic Based on Belief Degree

  • Conference paper
  • First Online:
Artificial Intelligence Logic and Applications (AILA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1657))

Included in the following conference series:

  • 268 Accesses

Abstract

Authentication protocols are the basis for secure communication in many distributed systems but are highly prone to errors in their design, preventing them from working properly. It is therefore necessary to analyze an authentication protocol to determine whether the designed protocol meets the requirements. Much attention has been paid to mathematical logic to analyze cryptographic protocols, particularly the logic proposed by Burrows, Abadi, and Needham (BAN logic). This logic has been successful in identifying weaknesses in various examples of authentication protocols. In this paper, we give a concept of “belief” for BAN logic based on the idea of possibility computation and further propose a quantitative BAN logic. It is also applied to the formal analysis and computation of a Radio Frequency Identification (RFID) authentication protocol to show how it works. The quantitative results on belief show that the proposed quantitative approach of BAN logic based on belief can more objectively reflect the security property of the authentication protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since \(M_2=h(T_A)\oplus T_A \oplus T_B\), for the sake of convenience for representation, we use \(M_2\) to replace \(h(T_A)\oplus T_A \oplus T_B\) if needed as follows.

References

  1. Li, C.-T., Weng, C.-Y., Lee, C.-C.: A secure RFID tag authentication protocol with privacy preserving in telecare medicine information system. J. Med. Syst. 39(8), 1–8 (2015). https://doi.org/10.1007/s10916-015-0260-0

    Article  Google Scholar 

  2. Chien, H.Y.: SASI: a new ultralightweight RFID authentication protocol providing strong authentication and strong integrity. IEEE Trans. Dependable Secure Comput. 4(4), 337–340 (2007)

    Article  Google Scholar 

  3. Yang, L., Han, J., Qi, Y., Liu, Y.: Identification-free batch authentication for RFID tags. In: The 18th IEEE International Conference on Network Protocols, pp. 154–163. IEEE (2010)

    Google Scholar 

  4. Tewari, A., Gupta, B.B.: Cryptanalysis of a novel ultra-lightweight mutual authentication protocol for IoT devices using RFID tags. J. Supercomput. 73(3), 1085–1102 (2016). https://doi.org/10.1007/s11227-016-1849-x

    Article  Google Scholar 

  5. Fan, K., Luo, Q., Li, H., Yang, Y.: Cloud-based lightweight RFID mutual authentication protocol. In: 2017 IEEE Second International Conference on Data Science in Cyberspace (DSC), pp. 333–338. IEEE (2017)

    Google Scholar 

  6. Fan, K., Luo, Q., Zhang, K., Yang, Y.: Cloud-based lightweight secure RFID mutual authentication protocol in IoT. Inf. Sci. 527, 329–340 (2020)

    Article  MathSciNet  Google Scholar 

  7. Kang, J., Fan, K., Zhang, K., Cheng, X., Li, H., Yang, Y.: An ultra light weight and secure RFID batch authentication scheme for IoMT. Comput. Commun. 167, 48–54 (2021)

    Article  Google Scholar 

  8. Das, A.K., Goswami, A.: A secure and efficient uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care. J. Med. Syst. 37(3), 1–16 (2013). https://doi.org/10.1007/s10916-013-9948-1

    Article  Google Scholar 

  9. Lee, C.C., Chen, C.T., Li, C.T., Wu, P.H.: A practical RFID authentication mechanism for digital television. Telecommun. Syst. 57(3), 239–246 (2014). https://doi.org/10.1007/s11235-013-9844-5

    Article  Google Scholar 

  10. Li, C., Lee, C., Weng, C., Fan, C.: A RFID-based macro-payment scheme with security and authentication for retailing services. ICIC Express Lett. 6(12), 3163–3170 (2012)

    Google Scholar 

  11. Liu, Y., Ezerman, M., Wang, H.: Double verification protocol via secret sharing for low-cost RFID tags. Futur. Gener. Comput. Syst. 90, 118–128 (2019)

    Article  Google Scholar 

  12. Agrahari, A.K., Varma, S.: A provably secure RFID authentication protocol based on ECQV for the medical internet of things. Peer-to-Peer Netw. Appl. 14(3), 1277–1289 (2021). https://doi.org/10.1007/s12083-020-01069-z

    Article  Google Scholar 

  13. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (Eds.): Handbook of Model Checking, vol. 10. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

  14. Clarke, E.M.: Model checking. In: Ramesh, S., Sivakumar, G. (eds.) FSTTCS 1997. LNCS, vol. 1346, pp. 54–56. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0058022

    Chapter  Google Scholar 

  15. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    Google Scholar 

  16. Sihan, Q.: Formal analysis of authentication protocols. J. Softw. 7, 107–114 (1996)

    Google Scholar 

  17. Woo-Sik, B.: Formal verification of an RFID authentication protocol based on hash function and secret code. Wireless Pers. Commun. 79(4), 2595–2609 (2014). https://doi.org/10.1007/s11277-014-1745-8

    Article  Google Scholar 

  18. Sohrabi-Bonab, Z., Alagheband, M.R., Aref, M.R.: Formal cryptanalysis of a CRC-based RFID authentication protocol. In: 2014 22nd Iranian Conference on Electrical Engineering (ICEE), pp. 1642–1647 (2014)

    Google Scholar 

  19. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_5

    Chapter  Google Scholar 

  20. Abadi, M., Tuttle, M.R.: A logic of authentication. In: ACM Transactions on Computer Systems, vol. 8, pp. 18–36. Citeseer (1990)

    Google Scholar 

  21. Chen, Y., Wu, H.: Domain semantics of possibility computations. Inf. Sci. 178(12), 2661–2679 (2008)

    Article  MathSciNet  Google Scholar 

  22. De Cooman, G., Ruan, D., Kerre, E.: Foundations and applications of possibility theory. Advances in Fuzzy Systems Applications and Theory, vol. 8 (World Scientific 1995) (1995)

    Google Scholar 

  23. Liang, W., Xie, S., Long, J., Li, K.C., Zhang, D., Li, K.: A double PUF-based RFID identity authentication protocol in service-centric internet of things environments. Inf. Sci. 503, 129–147 (2019)

    Article  Google Scholar 

  24. Li, T., Liu, Y.: A double PUF-based RFID authentication protocol. J. Comput. Res. Dev. 58(8), 1801 (2021)

    Google Scholar 

  25. Ha, J.H., Moon, S.J., Zhou, J., Ha, J.C.: A new formal proof model for RFID location privacy. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 267–281. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5_18

    Chapter  Google Scholar 

  26. Basin, D., Cremers, C., Meadows, C.: Model checking security protocols. In: Handbook of Model Checking, pp. 727–762. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_22

    Chapter  Google Scholar 

  27. Boyd, C., Mao, W.: On a limitation of BAN logic. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 240–247. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_20

    Chapter  Google Scholar 

  28. Mao, W., Boyd, C.: Towards formal analysis of security protocols. In: Proceedings Computer Security Foundations Workshop VI, pp. 147–158. IEEE (1993)

    Google Scholar 

  29. Blum, A.: A logic of belief. Notre Dame J. Form. Log. 17(3), 344–348 (1976)

    Article  MathSciNet  Google Scholar 

  30. Gong, L., Needham, R.M., Yahalom, R.: Reasoning about belief in cryptographic protocols. In: IEEE Symposium on Security and Privacy, vol. 1990, pp. 234–248. Citeseer (1990)

    Google Scholar 

  31. Knuth, D.E.: Backus normal form vs. backus naur form. Commun. ACM 7(12), 735–736 (1964)

    Article  Google Scholar 

  32. Hawthorne, J., Makinson, D.: The quantitative/qualitative watershed for rules of uncertain inference. Stud. Logica. 86(2), 247–297 (2007). https://doi.org/10.1007/s11225-007-9061-x

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work is supported by the East China Normal University - Huawei Trustworthiness Innovation Center and the Shanghai Trusted Industry Internet Software Collaborative Innovation Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixiang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, K., Wu, H., Xu, J., Chen, Y. (2022). Quantitative BAN Logic Based on Belief Degree. In: Chen, Y., Zhang, S. (eds) Artificial Intelligence Logic and Applications. AILA 2022. Communications in Computer and Information Science, vol 1657. Springer, Singapore. https://doi.org/10.1007/978-981-19-7510-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7510-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7509-7

  • Online ISBN: 978-981-19-7510-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics