Skip to main content

Radiation Use Efficiency (RUE) as Target for Improving Yield Potential: Current Status and Future Prospect

  • Chapter
  • First Online:
Translating Physiological Tools to Augment Crop Breeding

Abstract

Breeding and selection for harvest index to improve yield potentials have reached its biological ceiling limit. Recent efforts are on increasing yield potential by increasing biomass by optimizing radiation use efficiency (RUE). RUE is the efficiency of biomass production per unit light captured. It is essential to increase yield to meet the food demand of the growing population that is dependent on diminishing arable land. Improvements in RUE are possible by increasing photosynthetic efficiencies and its capacity. In this chapter, we describe the current understanding on RUE, the avenues that can be explored at leaf and canopy level to increase or optimize RUE, with major emphasis on improving photosynthetic efficiencies are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371

    Article  PubMed  Google Scholar 

  • Araus JL, Reynolds MP, Acevedo E (1993) Leaf posture, grain yield, growth, leaf structure and carbon isotope discrimination in wheat. Crop Sci 33:1273–1279

    Article  Google Scholar 

  • Bielczynski LW, Schansker G, Croce R (2020) Consequences of the reduction of the photosystem II antenna size on the light acclimation capacity of Arabidopsis thaliana. Plant Cell Environ 43:866–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blankenship RE, Madigan MT, Bauer CE (eds) (1995) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 6031:805–809

    Article  Google Scholar 

  • Carvalho J d FC, Madgwick PJ, Powers SJ, Keys AJ, Lea PJ, Parry MAJ (2011) An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration. BMC Biotechnol 11:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crist E, Mora C, Engelman R (2017) The interaction of human population, food production, and biodiversity protection. Science 356:260–264

    Article  CAS  PubMed  Google Scholar 

  • de Groot H (2008) Harnessing solar energy for the production of clean fuels. In: van Keulen H, van Laar HH, Rabbinge R (eds) 40 years theory and model at Wageningen UR—on the occasion of the 40th anniversary of the inaugural address of C.T. de Wit in 1968. Wageningen University and Research Centre, pp 5–7

    Google Scholar 

  • Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R (2014) Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 4:349–379

    Article  Google Scholar 

  • Elias E, Liguori N, Saga Y, Schäfers J, Croce R (2021) Harvesting far-red light with plant antenna complexes incorporating chlorophyll d. Biomacromolecules 22(8):3313–3322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60:2235–2248

    Article  CAS  PubMed  Google Scholar 

  • FAO (2009) How to feed the world: global agriculture towards 2050. www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf

  • FAO (2013) FAO STAT. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Foulkes MJ, Snape JW, Shearman VJ, Reynolds MP, Gaju O, Sylvester-Bradley R (2007) Genetic progress in yield potential in wheat: recent advances and future prospects. J Agric Sci 145:17–29

    Article  CAS  Google Scholar 

  • Foulkes MJ, Reynolds M, Sylvester-Bradley R (2009) Genetic improvement of grain crops: yield potential. In: Sadras VO, Calderini D (eds) Crop physiology applications for genetic improvement and agronomy. Elsevier, pp 235–256

    Google Scholar 

  • Foulkes MJ, Slafer GA, Davies WJ, Berry PM, Sylvester-Bradley R, Martre P, Calderini DF, Griffiths S, Reynolds MP (2011) Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot 62:469–486

    Article  CAS  PubMed  Google Scholar 

  • Furbank RT, Quick WP, Sirault X (2015) Improving photosynthesis and yield potential in cereal crops by targeted genetic manipulation: prospects, progress and challenges. Field Crop Res 182:19–29

    Article  Google Scholar 

  • Furbank RT, Sharwood R, Estavillo GM, Silva-Perez V, Condon AG (2020) Photons to food: genetic improvement of cereal crop photosynthesis. J Exp Bot 71(7):2226–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert IR, Jarvis PG, Smith H (2001) Proximity signal and shade avoidance differences between early and late successional trees. Nature 411(6839):792–795

    Article  CAS  PubMed  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, Mc Nicholas TP, Everson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Zhou Z, Li Z, Chen Y, Wang Z, Zhang H (2017) Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. F Crop Res 200:58–70

    Article  Google Scholar 

  • Guo JF, Li W, Shang LG, Wang YG, Yan P, Bai YH, Da XW, Wang K, Guo Q, Jiang RR et al (2021) OsbHLH98 regulates leaf angle in rice through transcriptional repression of OsBUL1. New Phytol 230:1953–1966

    Article  CAS  PubMed  Google Scholar 

  • Habiba, Xu J, Gad AG, Luo Y, Fan C, Uddin JBG, Ul Ain N, Huang C, Zhang Y, Miao Y, Zheng X (2021) Five OsS40 family members are identified as senescence-related genes in rice by reverse genetics approach. Front Plant Sci 12:701529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haga K, Takano M, Neumann R, Iino M (2005) The Rice Coleoptile Phototropism1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell 17(1):103–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer GL, Wright GC (1994) A theoretical analysis of nitrogen and radiation effects on radiation use efficiency in peanut. Aust J Agric Res 45:575–589

    Article  Google Scholar 

  • Hanna MC, Nozik AJ (2006) Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J Appl Phys 100:074510

    Article  Google Scholar 

  • Haro RJ, Otegui ME, Collino DJ, Dardanelli JL (2007) Environmental effects of seed yield determination of irrigated peanut crops: links with radiation use efficiency and crop growth rate. Field Crops Res 103:217–228

    Article  Google Scholar 

  • Hatfield J (2014) Radiation use efficiency: evaluation of cropping and management systems. Agron J 106:1820

    Article  Google Scholar 

  • Heureux AMC, Young JN, Whitney SM, Eason-Hubbard MR, Lee RBY, Sharwood RE, Rickaby REM (2017) The role of Rubisco kinetics and pyrenoid morphology in shaping the CCM of haptophyte microalgae. J Exp Bot 68:3959–3969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano K, Yoshida H, Aya K, Kawamura M, Hayashi M, Hobo T, Sato-Izawa K, Kitano H, Ueguchi-Tanaka M, Matsuoka M et al (2017) SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF and LOW-TILLERING form a complex to integrate auxin and brassinosteroid signalling in rice. Mol Plant 10:590–604

    Article  CAS  PubMed  Google Scholar 

  • Hochman Z, Gobbett DL, Horan H (2017) Climate trends account for stalled wheat yields in Australia since 1990. Glob Chang Biol 23:2071–2081

    Article  PubMed  Google Scholar 

  • Hubbart S, Smillie IR, Heatley M, Swarup R, Foo CC, Zhao L, Murchie EH (2018) Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice. Commun Biol 1:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Huber H, Gallenberger M, Jahn U, Eylert E, Berg IA, Kockelkorn D, Eisenreich W, Fuchs G (2008) A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilicArchaeumIgnicoccushospitalis. Proc Natl Acad Sci U S A 105(22):7851–7856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa C, Hatanaka T, Misoo S, Miyake C, Fukayama H (2011) Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiol 156:1603–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang S, Cho J-Y, Do G-R, Kang Y, Li H-Y, Song J, Kim H-Y, Kim B-G, Hsing Y-I (2021) Modulation of rice leaf angle and grain size by expressing OsBCL1 and OsBCL2 under the control of OsBUL1 promoter. Int J Mol Sci 22(15):7792. https://doi.org/10.3390/ijms22157792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston R, Wang M, Sun Q, Sylvester AW, Hake S, Scanlon MJ (2014) Transcriptomic analyses indicate that maize ligule development recapitulates gene expression patterns that occur during lateral organ initiation. Plant Cell 26(12):4718–4732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaldenhoff R (2012) Mechanisms underlying CO2 diffusion in leaves. Curr Opin Plant Biol 15(3):276–281

    Article  CAS  PubMed  Google Scholar 

  • Karamat U, Sun X, Li N, Zhao J (2021) Genetic regulators of leaf size in Brassica crops. Hort Res 8:91

    Article  Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    Article  CAS  PubMed  Google Scholar 

  • Kemanian AR, Stockle CO, Huggins D (2004) Variability of barley radiation-use efficiency. Crop Sci 44:1662–1672

    Article  Google Scholar 

  • Kim EH, Li XP, Razeghifard R, Anderson JM, Niyogi KK, Pogson BJ, Chow WS (2009) The multiple roles of light-harvesting chlorophyll a/b-protein complexes define structure and optimize function of Arabidopsis chloroplasts: a study using two chlorophyll b-less mutants. Biochim Biophys Acta 1787:973–984

    Article  CAS  PubMed  Google Scholar 

  • Kirst H, Formighieri C, Melis A (2014) Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size. Biochim Biophys Acta 1837:1653–1664

    Article  CAS  PubMed  Google Scholar 

  • Kromdijk J, Long SP (2016) One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation. Proc R Soc B 283:20152578. https://doi.org/10.1098/rspb

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurashov V, Yang M, Shen G, Piedl K, Laremore TN, Bryant DA, Golbeck JH (2019) Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes. Photosynth Res 141:151–163

    Article  CAS  PubMed  Google Scholar 

  • Li M, Liu Y, Ma J, Zhang P, Wang C, Su J, Yang D (2020) Genetic dissection of stem WSC accumulation and remobilization in wheat (Triticum aestivum L.) under terminal drought stress. BMC Genet 21:50. https://doi.org/10.1186/s12863-020-00855-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Zhang G, Xie R, Hou P, Ming B, Xue J, Wang K, Li S (2021) Optimizing row spacing increased radiation use efficiency and yield of maize. Agron J 113:4806–4818

    Article  Google Scholar 

  • Lin MT, Occhialini A, Andralojc JP, Devonshire J, Hines K, Parry MAJ, Hanson MR (2014) β-carboxysomal proteins assemble into highly organized structures in Nicotiana chloroplasts. Plant J 79:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Yang CY, Miao R, Zhou CL, Cao PH, Lan J, Zhu XJ, Mou CL, Huang YS, Liu SJ, Tian YL, Nguyen TL, Jiang L, Wan JM (2018) DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling. Rice 11(1):46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Yang R, Lu J, Wang X, Lu B, Tian X, Zhang Y (2019a) Radiation use efficiency and source-sink changes of super hybrid rice under shade stress during grain-filling stage. Agron J 111(4):1788–1798

    Article  Google Scholar 

  • Liu K, Cao J, Yu K, Liu X, Gao Y, Chen Q, Zhan W, Peng H, Du J, Xin M (2019b) Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling. Plant Physiol 181:179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long SP (2014) We need winners in the race to increase photosynthesis in rice, whether from conventional breeding, biotechnology or both. Plant Cell Environ 37:19–21

    Article  PubMed  Google Scholar 

  • Long SP, Zhu X-G, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    Article  CAS  PubMed  Google Scholar 

  • Marone D, Rodriguez M, Saia S, Papa R, Rau D, Pecorella I, Laidò G, Pecchioni N, Lafferty J, Rapp M, Longin FH, De Vita P (2020) Genome-wide association mapping of prostrate/erect growth habit in winter durum wheat. Int J Mol Sci 21(2):394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molero G, Joynson R, Pinera-Chavez FJ, Gardiner LJ, Rivera-Amado C, Hall A, Reynolds MP (2019) Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential. Plant Biotechnol J 17:1276–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteith JL (1977) Climate and the efficiency of crop production in Britain. Philos Trans R Soc Lond B Biol Sci 281(980):77–294

    Google Scholar 

  • Morales A, Kaiser E (2020) Photosynthetic acclimation to fluctuating irradiance in plants. Front Plant Sci 11:268. https://doi.org/10.3389/fpls.2020.00268

    Article  PubMed  PubMed Central  Google Scholar 

  • Munaiz ED, Martínez S, Kumar A, Caicedo M, Ordás B (2020) The senescence (stay-green)—an important trait to exploit crop residuals for bioenergy. Energies 13:790. https://doi.org/10.3390/en13040790

    Article  Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998

    Article  CAS  PubMed  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155(1):86–92

    Article  CAS  PubMed  Google Scholar 

  • Nakajima Y, Itayama T (2003) Analysis of photosynthetic productivity of microalgal mass cultures. J Appl Phycol 15:497–505

    Article  CAS  Google Scholar 

  • Negi S, Perrine Z, Friedland N, Kumar A, Tokutsu R, Minagawa J, Berg H, Barry AN, Govindjee G, Sayre R (2020) Light regulation of light-harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae. Plant J 103:584–603

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Grossman AR, Bjorkman O (1998) Arabidopsis mutants define a cen- tral role for the xanthophylls cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orr DJ, Alcântara A, Kapralov MV, Andralojc PJ, Carmo-Silva E, Parry MA (2016) Surveying Rubisco diversity and temperature response to improve crop photosynthetic efficiency. Plant Physiol 172:707–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ort DR, Zhu XG, Melis A (2011) Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol 155(1):79–85

    Article  CAS  PubMed  Google Scholar 

  • Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, Moore TA, Moroney JV, Niyogi KK, Parry MA, Peralta-Yahya P, Prince RC, Redding KE, Spalding MH, van Wijk KJ, Vermaas WF, von Caemmerer S, Weber AP, Yeates TO, Yuan JS, Zhu X (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci 112:8529–8536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osmond B, Forster B (2008) Photoinhibition: then and now. In: Demmig-Adams B, Adams WW III, Mattoo AK (eds) Photoprotection, photoinhibition, gene regulation and environment. Springer, Dordrecht, pp 11–22

    Chapter  Google Scholar 

  • Parry MAJ, Madgwick PJ, Carvahlo JFC, Andralojc PJ (2007) Prospects for increasing photosynthesis by overcoming the limitations of rubisco. J Agric Sci 145:31–43

    Article  CAS  Google Scholar 

  • Parry MAJ, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, Zhu XG, Price GD, Condon AG, Furbank RT (2011) Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J Exp Bot 62:453–467

    Article  CAS  PubMed  Google Scholar 

  • Peterhansel C, Blume C, Offermann S (2013) Photorespiratory bypasses: how can they work? J Exp Bot 64(3):709–715

    Article  CAS  PubMed  Google Scholar 

  • Price GD, Pengelly JJL, Forster B, Du J, Whitney S, von Caemmerer S, Badger MR, Howitt SM, Evans JR (2013) The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J Exp Bot 64(3):753–768

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8:e66428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds MP, Pfeiffer WH (2000) Applying physiological strategies to improve yield potential. In: Royo C, Nachit M, Di Fonzo N, Araus JL (eds) Durum wheat improvement in the Mediterranean region: new challenges. CIHEAM, Zaragoza, pp 95–103

    Google Scholar 

  • Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G (2012) Achieving yield gains in wheat. Plant Cell Environ 35:1799–1823

    Article  PubMed  Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47

    Article  CAS  PubMed  Google Scholar 

  • Sakowska K, Rodeghiero M, Alberti G, Colombo R, Celesti M, Mevy JP, Benjamin W (2018) Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant. Plant Cell Environ 41(6):1427–1437

    Article  CAS  PubMed  Google Scholar 

  • Sheehy JE, Mitchell PL (2015) Calculating maximum theoretical yield in rice. Crop Past Res 182:68–75

    Article  Google Scholar 

  • Shen G, Canniffe DP, Yang M, Vasily H, Art K, John VDE (2019) Characterization of chlorophyll f synthase heterologously produced in Synechococcussp. PCC 7002. Photosynth Res 140:77–92

    Article  CAS  PubMed  Google Scholar 

  • Shih PM, Zarzycki J, Niyogi KK, Kerfeld CA (2014) Introduction of a synthetic CO2-fixing photorespiratory bypass into a cyanobacterium. J Biol Chem 289(14):9493–9500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulski MD, Walter-Shea EA, Hubbard KG, Yuen GY, Horst G (2004) Penetration of photosynthetically active and ultraviolet radiation into alfalfa and tall fescue canopies. Agron J 96:1562–1571

    Article  Google Scholar 

  • Silva-Pérez V, De Faveri J, Molero G, Deery DM, Condon AG, Reynolds MP, Evans JR, Furbank RT (2020) Genetic variation for photosynthetic capacity and efficiency in spring wheat. J Exp Bot 71:2299–2311

    Article  PubMed  Google Scholar 

  • Sinclair TR, Muchow RC (1999) Radiation use efficiency. Adv Agron 65:215–265

    Article  Google Scholar 

  • Singh UM, Sinha P, Dixit S, Abbai R, Venkateshwarlu C, Chitikineni A (2020) Unraveling candidate genomic regions responsible for delayed leaf senescence in rice. PLoS One 15(10):e0240591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slattery RA, Ort DR (2021) Perspectives on improving light distribution and light use efficiency in crop canopies. Plant Physiol 185(1):34–48

    Article  CAS  PubMed  Google Scholar 

  • Slattery RA, Grennan AK, Sivaguru M, Sozzani R, Ort DR (2016) Light sheet microscopy reveals more gradual light attenuation in light-green versus dark-green soybean leaves. J Exp Bot 67:4697–4709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slattery RA, Vanloocke A, Bernacchi CJ, Zhu XG, Ort DR (2017) Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions. Front Plant Sci 8:1–19

    Article  Google Scholar 

  • Son M, Pinnola A, Gordon SC (2020) Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs. Nat Commun 11:1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stöckle CO, Kemanian AR (2009) Crop radiation capture and use efficiency: a framework for crop growth analysis. In: Sadras V, Calderini D (eds) Crop physiology. Academic Press, Elsevier Inc, pp 145–170

    Chapter  Google Scholar 

  • Tamoi M, Nagaoka M, Miyagawa Y, Shigeoka S (2006) Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol 47:380–390

    Article  CAS  PubMed  Google Scholar 

  • Thomas H, Ougham H (2014) The stay-green trait. J Exp Bot 65(14):3889–3900

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q (2019) Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365:658–664

    Article  CAS  PubMed  Google Scholar 

  • Tian BJ, Zhu JC, Liu XW, Huang SB, Wang P (2020) Interacting leaf dynamics and environment to optimize maize sowing date in North China plain. J Integr Agric 19:1227–1240

    Article  Google Scholar 

  • Tros M, Bersanini L, Shen G, Ho MY, van Stokkum IHM, Bryant DA, Croce R (2020) Harvesting far-red light: functional integration of chlorophyll f into photosystem I complexes of Synechococcus sp. PCC 7002. Biochim Biophys Acta 1861:148206

    Article  CAS  Google Scholar 

  • von Caemmerer S, Quick WP, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science 336:1671–1672

    Article  Google Scholar 

  • Wang R, Liu C, Li Q, Chen Z, Sun S, Wang X (2020) Spatiotemporal resolved leaf angle establishment improves rice grain yield via controlling population density. Science 23(9):101489

    Google Scholar 

  • Watson DJ (1947) Comparative physiological studies on the growth of field crops: I. variation in net assimilation rate and leaf area between species and varieties, and with and between years. Ann Bot 11:41–76

    Article  CAS  Google Scholar 

  • Wu X, Khan R, Gao H, Liu H, Zhang J, Ma X (2021) Low light alters the photosynthesis process in cigar tobacco via modulation of the chlorophyll content, chlorophyll fluorescence, and gene expression. Agriculture 11:755. https://doi.org/10.3390/agriculture11080755

    Article  CAS  Google Scholar 

  • Xin CP, Tholen D, Devloo V, Zhu XG (2015) The benefits of photorespiratory bypasses: how can they work? Plant Physiol 167(2):574–585

    Article  CAS  PubMed  Google Scholar 

  • Yabuta Y, Tamoi M, Yamamoto K, Tomizawa K-I, Yokota A, Shigeoka S (2008) Molecular design of photosynthesis-elevated chloroplasts for mass accumula- tion of a foreign protein. Plant Cell Physiol 49:375–385

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Struik PC (2015) Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology. J Exp Bot 66(21):6535–6549

    Article  CAS  PubMed  Google Scholar 

  • Zhi X, Tao Y, Jordan D, Borrell A, Hunt C, Cruickshank A, Potgieter A, Wu A, Hammer G, George-Jaeggli B, Mace E (2022) Genetic control of leaf angle in sorghum and its effect on light interception. J Exp Bot 73(3):801–816

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geetha Govind or B. T. Krishnaprasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Govind, G., Reddy, R., Hong, CY., Krishnaprasad, B.T. (2023). Radiation Use Efficiency (RUE) as Target for Improving Yield Potential: Current Status and Future Prospect. In: Harohalli Masthigowda, M., Gopalareddy, K., Khobra, R., Singh, G., Pratap Singh, G. (eds) Translating Physiological Tools to Augment Crop Breeding. Springer, Singapore. https://doi.org/10.1007/978-981-19-7498-4_8

Download citation

Publish with us

Policies and ethics