Skip to main content

Cuticular Waxes and Its Application in Crop Improvement

  • Chapter
  • First Online:
Translating Physiological Tools to Augment Crop Breeding
  • 328 Accesses

Abstract

Cuticle and cuticular waxes form the first level of barrier between the land plants and their external environment. This hydrophobic layer protects the plant tissues from excessive non-stomatal water loss, controls exchange of gases and solutes, conferring tolerance to enormous abiotic and biotic challenges. The cuticular waxes synthesized in epidermal cells is a complex mixture of very long-chain fatty acids, their esters, and derivatives. Its biosynthesis, transport, and deposition involve multiple genes and are tightly coordinated by complex molecular networks, which in turn is regulated in response to various environmental factors. Past few decades of research evidences from model as well as from non-model systems greatly expanded our understanding and knowledge of the genes involved in cuticular wax biosynthesis and its regulation in plants. This chapter briefly summarizes on the significance of cuticular waxes, its biosynthesis, transport, and deposition. Further, focus has been given toward the transcription factors identified in wax biosynthesis, its positive and negative regulators, and the targeted manipulation of cuticular wax biosynthesis in Arabidopsis and different crop plants resulted in tolerance toward adverse conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts MGM, Keijzer CJ, Stiekema WJ, Pereira A (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Domínguez E, Wang Z, De Vos RC, Jetter R, Schreiber L, Heredia A, Rogachev I, Aharoni A (2009) Fruit–surface flavonoid accumulation in tomato is controlled by a SlMYB12–regulated transcriptional network. PLoS Genet 5:e1000777

    Article  PubMed  PubMed Central  Google Scholar 

  • Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis alters cuticle properties and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Abdallat AM, Al-Debei HS, Ayad JY, Hasan S (2014) Over-expression of SlSHN1 gene improves drought tolerance by increasing cuticular wax accumulation in tomato. Int J Mol Sci 15:19499–19515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alkan N, Fortes AM (2015) Insights into molecular and metabolic events associated with fruit response to postharvest fungal pathogens. Front Plant Sci 6:889

    Article  PubMed  PubMed Central  Google Scholar 

  • Awika HO, Hays DB, Mullet JE, Rooney WL, Weers BD (2017) QTL mapping and loci dissection for leaf epicuticular wax load and canopy temperature depression and their association with QTL for staygreen in Sorghum bicolor under stress. Euphytica 213:207

    Article  Google Scholar 

  • Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J, Costa MD, Boutin JP, Miquel M, Tellier F, Domergue F, Markham JE, Beaudoin F, Napier JA, Faure JD (2008) The very- long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci U S A 105:14727–14731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaudoin F, Wu X, Li F, Haslam RP, Markham JE, Zheng H, Napier JA, Kunst L (2009) Functional characterization of the Arabidopsis β-Ketoacyl-Coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol 150:1174–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengtson C, Larsson S, Liljenberg C (1978) Effects of water stress on cuticular transpiration rate and amount and composition of epicuticular wax in seedlings of six oat varieties. Physiol Plant 44:319–324

    Article  CAS  Google Scholar 

  • Bernard A, Joubes J (2013) Arabidopsis cuticular waxes: advances in synthesis export and regulation. Prog Lipid Res 52:110–129

    Article  CAS  PubMed  Google Scholar 

  • Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure JD, Haslam RP, Napier JA, Lessire R, Joubès J (2012) Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very- long- chain alkane synthesis complex. Plant Cell 24:3106–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bessire M, Borel S, Fabre G, Carraça L, Efremova N, Yephremov A, Cao Y, Jetter R, Jacquat AC, Métraux JP, Nawrath C (2011) A member of the Pleiotropic Drug Resistance family of ATP binding cassette transporters is required for the formation of a functional cuticle in Arabidopsis. Plant Cell 23:1958–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi H, Shi J, Kovalchuk N, Luang S, Bazanova N, Chirkova L, Zhang D, Stepanenko A, Tricker P, Langridge P, Hrmova M, Lopato S, Borisjuk N (2018) Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications, improved drought tolerance, and no yield penalty under controlled growth conditions. Plant Cell Environ 41:2549–2566

    Article  CAS  PubMed  Google Scholar 

  • Bird D, Beisson F, Brigham A, Shin J, Greer S, Jetter R, Kunst L, Wu X, Yephremov A, Samuels L (2007) Characterization of Arabidopsis ABCG11/WBC11 an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52:485–498

    Article  CAS  PubMed  Google Scholar 

  • Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15:1020–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondada B, Oosterhuis DM, Murphy JB, Kim KS (1996) Effect of water stress on the epicuticular wax composition and ultrastructure of cotton (Gossypium hirsutum L.) leaf bract and boll. Environ Exp Bot 36:61–67

    Article  CAS  Google Scholar 

  • Borisjuk N, Hrmova M, Lopato S (2014) Transcriptional regulation of cuticle biosynthesis. Biotechnol Adv 2(2):526–540

    Article  Google Scholar 

  • Bourdenx B, Bernard A, Domergue F, Pascal S, Léger A, Roby D, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Joubès J (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156:29–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN1 a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci U S A 101:4706–4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burow GB, Franks CD, Acosta-Martinez V, Xin Z (2009) Molecular mapping and characterization of BLMC, a locus for profuse wax (bloom) and enhanced cuticular features of sorghum (Sorghum bicolor (L.) Moench.). Theor Appl Genet 118:423–431

    Article  CAS  PubMed  Google Scholar 

  • Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Goodwin SM, Boroff VL, Liu X, Jenks MA (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15:1170–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Goodwin SM, Liu X, Chen X, Bressan RA, Jenks MA (2005) Mutation of the RESURRECTION1 locus of Arabidopsis reveals an association of cuticular wax with embryo development. Plant Physiol 139:909–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Komatsuda T, Ma JF, Nawrath C, Pourkheirandish M, Tagiri A, Hu YG, Sameri M, Li X, Zhao X, Liu Y, Li C, Ma X, Wang A, Nair S, Wang N, Miyao A, Sakuma S, Yamaji N, Zheng X, Nevo E (2011) An ATP– binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. Proc Natl Acad Sci U S A 108:12354–12359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew W, Hrmova M, Lopato S (2013) Role of Homeodomain Leucine Zipper (HD–Zip) IV transcription factors in plant development and plant protection from deleterious environmental factors. Int J Mol Sci 14:8122–8147

    Article  PubMed  PubMed Central  Google Scholar 

  • Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C (2008) Overexpression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J 53:53–64

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Wu W, Wang K, Zhang Y, Hu Z, Brosché M, Liu S, Overmyer K (2019) Cell death regulation but not abscisic acid signaling is required for enhanced immunity to Botrytis in Arabidopsis cuticle-permeable mutants. J Exp Bot 70:5971–5984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debono A, Yeats TH, Rose JKC, Bird D, Jetter R, Kunst L, Samuels L (2009) Arabidopsis LTPG is a glycosylphosphatidyl inositol–anchored lipid transfer protein required for export of lipids to the plant s urface. Plant Cell 21:1230–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djemal R, Khoudi H (2015) Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum. L. subsp. durum). Protoplasma 252:1461–1473

    Article  CAS  PubMed  Google Scholar 

  • Djemal R, Khoudi H (2021) The barley SHN1-type transcription factor HvSHN1 imparts heat, drought and salt tolerances in transgenic tobacco. Plant Physiol Biochem 16:44–53

    Article  Google Scholar 

  • Djemal R, Mila I, Bouzayen M, Pirrello J, Khoudi H (2018) Molecular cloning and characterization of a novel WIN1/SHN1 ethylene-responsive transcription HvSHN1 in barley (Hordeum vulgare L.). J Plant Physiol 228:39–46

    Article  CAS  PubMed  Google Scholar 

  • Do THT, Martinoia E, Lee Y (2018) Functions of ABC transporters in plant growth and development. Curr Opin Plant Biol 41:32–48

    Article  CAS  PubMed  Google Scholar 

  • Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268:667–675

    Article  CAS  PubMed  Google Scholar 

  • Eigenbrode SD, Espelie KE (1995) Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol 40:171–194

    Article  Google Scholar 

  • Eigenbrode SD, Jetter R (2002) Attachment to plant surface waxes by an insect predator. Integr Comp Biol 42:1091–1099

    Article  CAS  PubMed  Google Scholar 

  • Eini O, Yang N, Pyvovarenko T, Pillman K, Bazanova N, Tikhomirov N, Eliby S, Shirley N, Sivasankar S, Tingey S, Langridge P, Hrmova M, Lopato S (2013) Complex regulation by Apetala2 domain-containing transcription factors revealed through analysis of the stress-responsive TdCor410b promoter from durum wheat. PLoS One 8:e58713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elejalde-Palmett C, Martinez San Segundo I, Garroum I, Charrier L, De Bellis D, Mucciolo A, Guerault A, Liu J, Zeisler-Diehl V, Aharoni A, Schreiber L, Bakan B, Clausen MH, Geisler M, Nawrath C (2021) ABCG transporters export cutin precursors for the formation of the plant cuticle. Curr Biol 31:2111–2123

    Article  CAS  PubMed  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Febrero A, Fernández S, Molina-Cano JL, Araus JL (1998) Yield, carbon isotope discrimination, canopy reflectance and cuticular conductance of barley isolines of differing glaucousness. J Exp Bot 49:1575–1581

    Article  CAS  Google Scholar 

  • Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, Preuss D (2000) Alterations in CER6 a gene identical to CUT1 differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12:2001–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke R, Höfer R, Briesen I, Emsermann M, Efremova N, Yephremov A, Schreiber L (2009) The DAISY gene from Arabidopsis encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza-micropyle region of seeds. Plant J 57:80–95

    Article  CAS  PubMed  Google Scholar 

  • Fukuda S, Satoh A, Kasahara H, Matsuyama H, Takeuchi Y (2008) Effects of ultraviolet-B irradiation on the cuticular wax of cucumber (Cucumis sativus) cotyledons. J Plant Res 121:179–189

    Article  CAS  PubMed  Google Scholar 

  • Gilding EK, Marks MD (2010) Analysis of purified glabra 3-shapeshifter trichomes reveals a role for NOECK in regulating early trichome morphogenic events. Plant J 64:304–317

    Article  CAS  PubMed  Google Scholar 

  • Goodwin SM, Jenks MA (2005) Plant cuticle function as a barrier to water loss. In: Jenks MA, Hasegawa PM (eds) Plant abiotic stress. Blackwell Publishing, Inc

    Google Scholar 

  • Greer S, Wen M, Bird D, Wu X, Samuels L, Kunst L, Jetter R (2007) The Cytochrome P450 Enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiol 145:653–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Yang H, Zhang X, Yang S (2013) Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot 64:1755–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Xu W, Yu X, Shen H, Li H, Cheng D, Liu A, Liu J, Liu C, Zhao S, Song J (2016) Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines. Front Plant Sci 7:1809

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen JD, Pyee J, Xia Y, Wen TJ, Robertson DS, Kolattukudy PE, Nikolau BJ, Schnable PS (1997) The glossy1 locus of maize and an epidermis-specific cDNA from Kleinia odora define a class of receptor- like proteins required for the normal accumulation of cuticular waxes. Plant Physiol 113:1091–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Davies NW, Shabala L, Zhou M, Brodribb TJ, Shabala S (2017) Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley. BMC Plant Biol 17:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Haslam TM, Mañas-Fernández A, Zhao L, Kunst L (2012) Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol 160:1164–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslam TM, Haslam R, Thoraval D, Pascal S, Delude C, Domergue F, Fernández AM, Beaudoin F, Napier JA, Kunst L, Joubès J (2015) ECERIFERUM2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation. Plant Physiol 167(3):682–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang MH, Nguyen XC, Lee K, Kwon YS, Pham HT, Park HC, Yun DJ, Lim CO, Chung WS (2012) Phosphorylation by AtMPK6 is required for the biological function of AtMYB41 in Arabidopsis. Biochem Biophys Res Commun 422:181–186

    Article  CAS  PubMed  Google Scholar 

  • Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129:1568–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram G, Nawrath C (2017) The roles of the cuticle in plant development: organ adhesions and beyond. J Exp Bot 68:5307–5321

    Article  CAS  PubMed  Google Scholar 

  • Ingram GC, Magnard JL, Vergne P, Dumas C, Rogowsky PM (1999) ZmOCL1 an HDGL2 family homeobox gene is expressed in the outer cell layer throughout maize development. Plant Mol Biol 40:343–354

    Article  CAS  PubMed  Google Scholar 

  • Ingram GC, Boisnard-Lorig C, Dumas C, Rogowsky PM (2000) Expression patterns of genes encoding HD–zip IV homeo domain proteins define specific domains in maize embryos and meristems. Plant J 22:401–414

    Article  CAS  PubMed  Google Scholar 

  • Islam MA, Du H, Ning J, Ye H, Xiong L (2009) Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol 70:443–456

    Article  CAS  PubMed  Google Scholar 

  • Javelle M, Vernoud V, Depège-Fargeix N, Arnould C, Oursel D, Domergue F, Sarda X, Rogowsky PM (2010) Overexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor outer cell layer1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis. Plant Physiol 154:273–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javelle M, Klein-Cosson C, Vernoud V, Boltz V, Maher C, Timmermans M, Depège-Fargeix N, Rogowsky PM (2011) Genome-wide characterization of the HD–ZIP IV transcription factor family in maize: preferential expression in the epidermis. Plant Physiol 157:790–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson P, Johnson D, Rumbaugh M, Asay K (1989) Water stress and genotypic effects on epicuticular wax production of alfalfa and crested wheatgrass in relation to yield and excised leaf water loss rate. Can J Plant Sci 69:481–490

    Article  Google Scholar 

  • Jenks MA, Joly RJ, Peters PJ, Rich PJ, Axtell JD, Ashworth EN (1994) Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor (L.) Moench. Plant Physiol 105:1239–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenks MA, Andersen L, Teusink RS, Williams MH (2001) Leaf cuticular waxes of potted rose cultivars as affected by plant development drought and paclobutrazol treatments. Physiol Plant 112:62–70

    Article  CAS  PubMed  Google Scholar 

  • Jessen D, Olbrich A, Knüfer J, Krüger A, Hoppert M, Polle A, Fulda M (2011) Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis. Plant J 68:715–726

    Article  CAS  PubMed  Google Scholar 

  • Jetter R, Kunst L (2008) Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J 54:670–683

    Article  CAS  PubMed  Google Scholar 

  • Jetter R, Schaffer S (2001) Chemical composition of the Prunus laurocerasus leaf surface: dynamic changes of the epicuticular wax film during leaf development. Plant Physiol 126:1725–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jetter R, Kunst L, Samuels AL (2006) Composition of plant cuticular waxes. In: Riederer M, Müller C (eds) Annual plant reviews 23: biology of the plant cuticle. Blackwell Publishing, Oxford, pp 145–181

    Chapter  Google Scholar 

  • Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan W, Shouse PJ, Blum A, Miller FR, Monk RL (1984) Environmental physiology of sorghum, II, epicuticular wax load and cuticular transpiration. Crop Sci 24:1168–1173

    Article  Google Scholar 

  • Ju S, Go YS, Choi HJ, Park JM, Suh MC (2017) DEWAX transcription factor is involved in resistance to Botrytis cinerea in Arabidopsis thaliana and Camelina sativa. Front Plant Sci 8:1210

    Article  PubMed  PubMed Central  Google Scholar 

  • Kagaya Y, Ohmiya K, Hattori T (1999) RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res 27(2):470–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannangara R, Branigan C, Liu Y, Penfield T, Rao V, Mouille G, Hofte H, Pauly M, Riechmann JL, Broun P (2007) The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19(4):1278–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerstiens G (ed) (1996) Plant cuticles: an integrated functional approach. BIOS Scientific Publishers Limited, Oxford

    Google Scholar 

  • Kim H, Lee SB, Kim HJ, Min MK, Hwang I, Suh MC (2012) Characterization of glycosylphosphatidyl inositol- anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in Arabidopsis thaliana. Plant Cell Physiol 53:1391–1403

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Jung JH, Lee SB, Go YS, Kim HJ, Cahoon R, Markham JE, Cahoon EB, Suh MC (2013) Arabidopsis 3- Ketoacyl-Coenzyme A Synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol 162:567–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Go YS, Suh MC (2018) DEWAX2 transcription factor negatively regulates cuticular wax biosynthesis in Arabidopsis leaves. Plant Cell Physiol 59(5):966–977

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy P (1980) Cutin suberin and waxes. In: Stumpf PK (ed) The biochemistry of plants a comprehensive treatise, vol 4. Academic Press, New York, pp 571–641

    Google Scholar 

  • Kong L, Zhi P, Liu J, Li H, Zhang X, Xu J, Zhou J, Wang X, Chang C (2020) Epigenetic activation of enoyl-CoA reductase by an acetyltransferase complex triggers wheat wax biosynthesis. Plant Physiol 183:1250–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lü S, Joubès J, Jenks MA (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol 151:1918–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Yogendra KN, Karre S, Kushalappa AC, Dion Y, Choo TM (2016) WAX INDUCER1 (HvWIN1) transcription factor regulates free fatty acid biosynthetic genes to reinforce cuticle to resist fusarium head blight in barley spikelets. J Exp Bot 67(14):4127–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  CAS  PubMed  Google Scholar 

  • Kurdyukov S, Faust A, Nawrath C, Bär S, Voisin D, Efremova N, Franke R, Schreiber L, Saedler H, Métraux JP, Yephremov A (2006) The epidermis-specific extracellular BODYGUARD controls cuticle development and morphogenesis in Arabidopsis. Plant Cell 18:321–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SB, Suh MC (2015a) Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Rep 34:557–572

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Suh MC (2015b) Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis. Plant Cell Physiol 56(1):48–60

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Go YS, Bae HJ, Park JH, Cho SH, Cho HJ, Lee DS, Park OK, Hwang I, Suh MC (2009a) Disruption of glycosylphosphatidyl inositol-anchored lipid transfer protein gene altered cuticular lipid composition increased plastoglobules and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiol 150:42–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SB, Jung SJ, Go YS, Kim HU, Kim JK, Cho HJ, Park OK, Suh MC (2009b) Two Arabidopsis 3- ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J 60:462–475

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Kim H, Kim RJ, Suh MC (2014) Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. Plant Cell Rep 33:1535–1546

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Kim HU, Suh MC (2016) MYB94 and MYB96 additively active cuticular wax biosynthesis in Arabidopsis. Plant Cell Physiol 57:2300–2311

    Article  CAS  PubMed  Google Scholar 

  • Lewandowska M, Keyl A, Feussner I (2020) Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. New Phytol 227:698–713

    Article  CAS  PubMed  Google Scholar 

  • Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, Jetter R, Kunst L (2008) Identification of the wax ester synthase/acyl-coenzyme a: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol 148:97–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl- lipid metabolism. Arabidopsis Book 8:e0161

    Article  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

    Article  CAS  PubMed  Google Scholar 

  • Lisso J, Schroder F, Schippers JH, Mussig C (2012) NFXL2 modifies cuticle properties in Arabidopsis. Plant Signal Behav 7:551–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Dong X, Liu Z, Tang J, Zhuang M, Zhang Y, Lv H, Liu Y, Li Z, Fang Z, Yang L (2018) Fine mapping and candidate gene identification for wax biosynthesis locus, BoWax1 in Brassica oleracea L. var. capitata. Front. Plant Sci 9:309

    Google Scholar 

  • Liu N, Chen J, Wang T, Li Q, Cui P, Jia C, Hong Y (2019) Overexpression of WAX INDUCER1/SHINE1 gene enhances wax accumulation under osmotic stress and oil synthesis in Brassica napus. Int J Mol Sci 20(18):4435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long LM, Patel HP, Cory WC, Stapleton AE (2003) The maize epicuticular wax layer provides UV protection. Fun Plant Biol 30:75–81

    Article  Google Scholar 

  • Lü S, Song T, Kosma DK, Parsons EP, Rowland O, Jenks MA (2009) Arabidopsis CER8 encodes LONG–CHAIN ACYLCOA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J 59:553–564

    Article  PubMed  Google Scholar 

  • Lü S, Zhao H, Parsons EP, Xu C, Kosma DK, Xu X, Chao D, Lohrey G, Bangarusamy DK, Wang G, Bressan RA, Jenks MA (2011) The glossyhead1 allele of ACC1 reveals a principal role f or multidomain Acetyl- Coenzyme A Carboxylase in the biosynthesis of cuticular waxes by Arabidopsis. Plant Physiol 157:1079–1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo B, Xue XY, Hu WL, Wang LJ, Chen XY (2007) An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion. Plant Cell Physiol 48:1790–1802

    Article  CAS  PubMed  Google Scholar 

  • Mamrutha HM, Mogili T, Lakshmi JK, Rama N, Kosma D, Udaya Kumar M, Jenks MA, Karaba NN (2010) Leaf cuticular wax amount and crystal morphology regulate post-harvest water loss in mulberry (Morus species). Plant Physiol Biochem 48:690–696

    Article  CAS  PubMed  Google Scholar 

  • Mamrutha HM, Nataraja KN, Rama N, Kosma DK, Mogili T, Jhansi-Lakshmi K, Udaya Kumar M, Jenks MA (2017) Leaf surface wax composition of genetically diverse mulberry (Morus sp.) genotypes and its close association with expression of genes involved in wax metabolism. Curr Sci 112:759–766

    Article  CAS  Google Scholar 

  • Marques WL, Salazar MM, Camargo ELO, Lepikson-Neto J, Tiburcio RA, Costa do Nascimento L, Pereira GAG (2013) Identification of four Eucalyptus genes potentially involved in cell wall biosynthesis and evolutionarily related to SHINE transcription factors. Plant Growth Regul 69:203–208

    Article  CAS  Google Scholar 

  • Marques JPR, Amorim L, Spósito MB, Appezzato-da-Glória B (2016) Ultrastructural changes in the epidermis of petals of the sweet orange infected by Colletotrichum acutatum. Protoplasma 253:1233–1242

    Article  PubMed  Google Scholar 

  • Masaki T, Mitsui N, Tsukagoshi H, Nishii T, Morikami A, Nakamura K (2005) ACTIVATOR of Spomin::LUC1/WRINKLED1 of Arabidopsis thaliana transactivates sugar-inducible promoters. Plant Cell Physiol 46:547–556

    Article  CAS  PubMed  Google Scholar 

  • McFarlane HE, Shin JJ, Bird DA, Samuels AL (2010) Arabidopsis ABCG transporters which are required for export of diverse cuticular lipids dimerize in different combinations. Plant Cell 22:3066–3075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFarlane HE, Watanabe Y, Yang W, Huang Y, Ohlrogge J, Samuels AL (2014) Golgi- and trans- Golgi network-mediated vesicle trafficking is required for wax secretion from epidermal cells. Plant Physiol 164(3):1250–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mintz-Oron S, Mandel T, Rogachev I, Feldberg L, Lotan O, Yativ M, Wang Z, Jetter R, Venger I, Adato Aharoni A (2008) Gene expression and metabolism in tomato fruit surface tissues. Plant Physiol 147:823–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  CAS  PubMed  Google Scholar 

  • Moitra K, Silverton L, Limpert K, Im K, Dean M (2011) Moving out: from sterol transport to drug resistance, the ABCG subfamily of efflux pumps. Drug Metabol Drug Interact 26:105–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • More P, Agarwal P, Joshi PS, Agarwal PK (2019) The JcWRKY tobacco transgenics showed improved photosynthetic efficiency and wax accumulation during salinity. Sci Rep 9:19617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadakuduti SS, Pollard M, Kosma DK, Allen JC, Ohlrogge JB, Barry CS (2012) Pleiotropic phenotypes of the sticky peel mutant provide new insight into the role of CUTIN DEFICIENT2 in epidermal cell function in tomato. Plant Physiol 159:945–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro M, Ayax C, Martinez Y, Laur J, El Kayal W, Marque C, Teulières C (2011) Two EguCBF1 genes overexpressed in eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 9:50–63

    Article  CAS  PubMed  Google Scholar 

  • Nawrath C, Schreiber L, Franke RB, Geldner N, Reina-Pinto JJ, Kunst L (2013) Apoplastic diffusion barriers in Arabidopsis. Arabidopsis Book 11:e0167

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen VNT, Lee SB, Suh MC, An G, Jung KH (2018) OsABCG9 is an important ABC transporter of cuticular wax deposition in rice. Front Plant Sci 9:960

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohlrogge JB, Pollard MR, Stumpf PK (1978) Studies on biosynthesis of waxes by developing jojoba seed tissues. Lipids 13:203–210

    Article  CAS  Google Scholar 

  • Oshima Y, Mitsuda N (2013) The MIXTA-like transcription factor MYB16 is a major regulator of cuticle formation in vegetative organs. Plant Signal Behav 9:e26826

    Article  Google Scholar 

  • Oshima Y, Shikata M, Koyama T, Ohtsubo N, Mitsuda N, Ohme-Takagi M (2013) MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. Plant Cell 25:1609–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panikashvili D, Shi JX, Schreiber L, Aharoni A (2011) The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis. New Phytol 190:113–124

    Article  CAS  PubMed  Google Scholar 

  • Park CS, Go YS, Suh MC (2016) Cuticular wax biosynthesis is positively regulated by WRINKLED4, an AP2/ERF-type transcription factor, in Arabidopsis stems. Plant J 88(2):257–270

    Article  CAS  PubMed  Google Scholar 

  • Pascal S, Bernard A, Sorel M, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Domergue F, Joubès J (2013) The Arabidopsis cer26 mutant, like the cer2 mutant, is specifically affected in the very long-chain fatty acid elongation process. Plant J 73:733–746

    Article  CAS  PubMed  Google Scholar 

  • Pighin JA, Zheng H, Balakshin LJ, Goodman IP, Western TL, Jetter R, Kunst L, Samuels AL (2004) Plant cuticular lipid export requires an ABC transporter. Science 306:702–704

    Article  CAS  PubMed  Google Scholar 

  • Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246

    Article  CAS  PubMed  Google Scholar 

  • Rashotte AM, Jenks MA, Nguyen TD, Feldmann KA (1997) Epicuticular wax variation in ecotypes of Arabidopsis thaliana. Phytochemistry 45(2):251–255

    Article  CAS  PubMed  Google Scholar 

  • Richards RA, Rawson HM, Johnson DA (1986) Glaucousness in wheat: its development and effect on water use efficiency, gas exchange and photosynthetic tissue temperatures. Funct Plant Biol 13:465–473

    Article  Google Scholar 

  • Rowland O, Domergue F (2012) Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications. Plant Sci 193–194:28–38

    Article  PubMed  Google Scholar 

  • Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L (2006) CER4 encodes an alcohol- forming fatty acyl-coenzyme a reductase involved in cuticular wax production in Arabidopsis. Plant Physiol 142:866–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland O, Lee R, Franke R, Schreiber L, Kunst L (2007) The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS Lett 581:3538–3544

    Article  CAS  PubMed  Google Scholar 

  • Sajeevan RS, Nataraja KN, Shivashankara KS, Pallavi N, Gurumurthy DS, Shivanna MB (2017a) Expression of Arabidopsis SHN1 in Indian mulberry (Morus indica L.) increases leaf surface wax content and reduces post-harvest water loss. Front Plant Sci 8:418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajeevan RS, Parvathi MS, Nataraja KN (2017b) Leaf wax trait in crops for drought and biotic stress tolerance: regulators of epicuticular wax synthesis and role of small RNAs. Indian J Plant Physiol 22:434–447

    Article  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA- binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Sakuradani E, Zhao L, Haslam TM, Kunst L (2013) The CER22 gene required for the synthesis of cuticular wax alkanes in Arabidopsis thaliana is allelic to CER1. Planta 237:731–738

    Article  CAS  PubMed  Google Scholar 

  • Samdur M, Manivel P, Jain VB, Chikani BM, Gor HK, Desai S, Misra JB (2003) Genotypic differences and water–deficit induced enhancement in epicuticular wax load in peanut. Crop Sci 43:1294–1299

    Article  Google Scholar 

  • Samuels L, DeBono A, Lam P, Wen M, Jetter R, Kunst L (2008) Use of Arabidopsis eceriferum mutants to explore plant cuticle biosynthesis. J Vis Exp 31:709

    Google Scholar 

  • Seo PJ, Park CM (2011) Cuticular wax biosynthesis as a way of inducing drought resistance. Plant Signal Behav 6:1043–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151:275–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Park CM (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi JX, Malitsky S, De Oliveira S, Branigan C, Franke RB, Schreiber L, Aharoni A (2011) SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs. PLoS Genet 7:e1001388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi JX, Adato A, Alkan N, He Y, Lashbrooke J, Matas AJ, Meir S, Malitsky S, Isaacson T, Prusky D, Leshkowitz D, Schreiber L, Granell AR, Widemann E, Grausem B, Pinot F, Rose JKC, Rogachev I, Rothan C, Aharoni A (2013) The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning. New Phytol 197:468–480

    Article  CAS  PubMed  Google Scholar 

  • Skamnioti P, Gurr SJ (2007) Magnaporthe grisea cutinase2 mediates aspersorium differentiation and host penetration and is required for full virulence. Plant Cell 19:2674–2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan S, Gomez SM, Kumar SS, Ganesh SK, Biji KR, Senthil A, Ranganathan C (2008) QTLs linked to leaf epicuticular wax, physio-morphological and plant production traits under drought stress in rice (Oryza sativa L.). Plant Growth Regul 56:245–256

    Article  CAS  Google Scholar 

  • Taketa S, Amano S, Tsujino Y, Sato T, Saisho D, Kakeda K, Nomura M, Suzuki T, Matsumoto T, Sato K, Kanamori H, Kawasaki S, Takeda K (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci U S A 105:4062–4067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tillett RL, Wheatley MD, Tattersall EA, Schlauch KA, Cramer GR, Cushman JC (2012) The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotechnol J 10(1):105–124

    Article  CAS  PubMed  Google Scholar 

  • To A, Joubès J, Barthole G, Lécureuil A, Scagnelli A, Jasinski S, Lepiniec L, Baud S (2012) WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. Plant Cell 24:5007–5023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todd J, Post BD, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119–130

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wan L, Zhang L, Zhang Z, Zhang H, Quan R, Zhou S, Huang R (2012) An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol Biol 78:275–288

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhi P, Fan Q, Zhang M, Chang C (2019) Wheat CHD3 protein TaCHR729 regulates the cuticular wax biosynthesis required for stimulating germination of Blumeria graminis f. sp. tritici. J Exp Bot 70:701–713

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Xue W, Li X, Li J, Wu J, Xie L, Kawabata S, Li Y, Zhang Y (2020) EgMIXTA1, a MYB- type transcription factor, promotes cuticular wax formation in Eustoma grandiflorum leaves. Front Plant Sci 11:524947

    Article  PubMed  PubMed Central  Google Scholar 

  • Wellesen K, Durst F, Pinot F, Benveniste I, Nettesheim K, Wisman E, Steiner-Lange S, Saedler H, Yephremov A (2001) Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid omega-hydroxylation in development. Proc Natl Acad Sci U S A 98:9694–9699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng H, Molina I, Shockey J, Browse J (2010) Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis. Planta 231:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Li S, He S, Wassmann F, Yu C, Qin G, Schreiber L, Qu LJ, Gu H (2011) CFL1 a WW domain protein regulates cuticle development by modulating the function of HDG1 a class IV homeodomain transcription factor in rice and Arabidopsis. Plant Cell 23:3392–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z-S, Chen M, Li L-C, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53(7):570–585

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Wu H, Zhao M, Wu W, Xu Y, Gu D (2016) Overexpression of the transcription factors GmSHN1 and GmSHN9 differentially regulates wax and cutin biosynthesis, alters cuticle properties, and changes leaf phenotypes in Arabidopsis. Int J Mol Sci 17:587

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue D, Zhang X, Lu X, Chen G, Chen Z-H (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci 8:621

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhao X, Liang L, Xia Z, Lei L, Niu X, Zou C, Zhang KQ (2011) Overexpression of a cuticle-degrading protease Ver112 increases the nematicidal activity of Paecilomyces lilacinus. Appl Microbiol Biotechnol 89:1895–1903

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Zhao H, Kosma DK, Tomasi P, Dyer JM, Li R, Liu X, Wang Z, Parsons EP, Jenks MA, Lü S (2017) The acyl desaturase CER17 is involved in producing wax unsaturated primary alcohols and cutin monomers. Plant Physiol 173:1109–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SU, Kim H, Kim RJ, Kim J, Suh MC (2020) AP2/DREB transcription factor RAP2.4 activates cuticular wax biosynthesis in Arabidopsis leaves under drought. Front. Plant Sci 11:895

    CAS  Google Scholar 

  • Yeats TH, Rose JKC (2008) The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci 17:191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K, Saedler H (1999) Characterization of the FIDDLE HEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11:2187–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Overexpression of WXP1 a putative Medicago truncatula AP2 domain-containing transcription factor gene increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Broeckling CD, Sumner LW, Wang ZY (2007) Heterologous expression of two Medicago truncatula putative ERF transcription factor genes WXP1 and WXP2 in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance but differential response in freezing tolerance. Plant Mol Biol 64:265–278

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yang J, Yang Y, Luo J, Zheng X, Wen C, Xu Y (2019a) Transcription factor CsWIN1 regulates pericarp wax biosynthesis in cucumber grafted on pumpkin. Front Plant Sci 10:1564

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang YL, Zhang CL, Wang GL, Wang YX, Qi CH, You CX, Li YY, Hao YJ (2019b) Apple AP2/EREBP transcription factor MdSHINE2 confers drought resistance by regulating wax biosynthesis. Planta 249(5):1627–1643

    Article  CAS  PubMed  Google Scholar 

  • Zhang YL, Zhang CL, Wang GL, Wang YX, Qi CH, Zhao Q, You CX, Li YY, Hao YJ (2019c) The R2R3 MYB transcription factor MdMYB30 modulates plant resistance against pathogens by regulating cuticular wax biosynthesis. BMC Plant Biol 19:362

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis Enoyl–CoA reductase gene reveal an essential role for very–long–chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17:1467–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Xiong L (2013) Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice. Proc Natl Acad Sci U S A 110:17790–17795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Guo J, Zhu J, Zhou C (2014) Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis. Plant Physiol Biochem 75:24–35

    Article  PubMed  Google Scholar 

  • Ziv C, Zhao Z, Gao YG, Xia Y (2018) Multifunctional roles of plant cuticle during plant-pathogen interactions. Front Plant Sci 9:1088

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha Sivarajan Sajeevan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sajeevan, R.S. (2023). Cuticular Waxes and Its Application in Crop Improvement. In: Harohalli Masthigowda, M., Gopalareddy, K., Khobra, R., Singh, G., Pratap Singh, G. (eds) Translating Physiological Tools to Augment Crop Breeding. Springer, Singapore. https://doi.org/10.1007/978-981-19-7498-4_7

Download citation

Publish with us

Policies and ethics