Skip to main content

Ferulic Acid as Feed Additives in Aquaculture: A Review on Growth, Immune Response, and Antioxidant Status of Finfish

  • Chapter
  • First Online:
Emerging Sustainable Aquaculture Innovations in Africa

Abstract

Producing protein through aquaculture is the solution to the world’s protein needs. Aquaculture feed additives boost fish growth, immunology, and antioxidant status and prevent diseases. Among these feed additives, phytochemicals draw the most attention. Phytochemicals are considered harmless for humans, fish, and the environment because they are natural products. Ferulic acid (FA) is a phenolic substance with numerous advantages linked to its antioxidant, cytoprotective, antibacterial, and anabolic activities, generating particular interest in aquaculture. The stimulation and favouring of these systems lead to the stimulation of physiological and metabolic processes, promoting aquatic animals’ development and reproduction. Therefore, the administration of FA could enhance the growth of muscle fibres, immunological response, inflammatory response, and antioxidant capacity in fish. This is a product that African aquaculture farmers can incorporate into their fish feed formulas; however, more research is required to fully understand the dietary potential of FA application, particularly in Africa. Therefore, this chapter reviewed recent studies that utilize ferulic acid (FA) as feed additives in cultured fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aarabi A (2016) Extraction and purification of ferulic acid as an antioxidant from sugar beet pulp by alkaline hydrolysis. Ital J Food Sci 28:362–375

    CAS  Google Scholar 

  • Abasubong KP, Li XF, Adjoumani JJY, Jiang GZ, Desouky HE, Liu WB (2022) Effects of dietary xylooligosaccharide prebiotic supplementation on growth, antioxidant and intestinal immune-related genes expression in common carp Cyprinus carpio fed a high-fat diet. J Anim Physiol Anim Nutr 106(2):403–418

    Article  CAS  Google Scholar 

  • Abdel-Tawwab M, Khalil RH, Metwally AA, Shakweer MS, Khallaf MA, Abdel Latif HMR (2020) Effects of black soldier fly ( Hermetia illucens L.) larvae meal on growth performance, organs-somatic indices, body composition, and hemato-biochemical variables of European sea bass, Dicentrarchus labrax. Aquaculture 522:735136

    Article  CAS  Google Scholar 

  • Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agric Food Chem 50:6182–6187

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Hernández I, Afseth NK, LĂłpez-Luke T, Contreras-Torres FF, PetterWold J, Ornelas-Soto N (2017) Surface enhanced Raman spectroscopy of phenolic antioxidants: a systematic evaluation of ferulic acid, p -coumaric acid, caffeic acid and sinapic acid. Vib Spectrosc 89:113–122

    Article  Google Scholar 

  • Ahmadifar E, Moghadam MS, Dawood MAO, Hoseinifar SH (2019) Lactobacillus fermentum and/or ferulic acid improved the immune responses, antioxidative defence and resistance against Aeromonas hydrophila in common carp (Cyprinus carpio) fingerlings. Fish Shellfish Immunol 94:916–923

    Article  CAS  PubMed  Google Scholar 

  • Arslan G, Sönmez AY, Yanık T (2018) Effects of grapeVitis vinifera seed oil supplementation on growth, survival, fatty acid profiles, antioxidant contents andblood parameters in rainbow trout Oncorhynchus mykiss. Aquac Res 49:2256–2266

    Article  CAS  Google Scholar 

  • Arumsari AG, Nugrahani RA, Hendrawati TY (2019) The Extraction of Ferulic Acid from the phenolic fraction from rice bran oil using ultrasonic methods and analysis of antioxidant effectiveness:third international conference on sustainable innovation. Adv Health Sci Educ Theory Pract. 15:37–39

    Google Scholar 

  • Bento-Silva A, Vaz Patto MC, do Rosário Bronze M (2018) Relevance, structure and analysis of ferulic acid in maize cell walls. Food Chem 246:360–378

    Article  CAS  PubMed  Google Scholar 

  • Bezerra GSN, Pereira MAV, Ostrosky EA, e e Barbosa EG, de Moura M, Ferrari M, Arago CFS, Gomes APB (2017) Compatibility study between ferulic acid and excipients used in cosmetic formulations by TG/DTG, DSC and FTIR. J Therm Anal Calorim 127: 1683-1691.

    Google Scholar 

  • Bilen S, Karga M, Altunolu YE, Ulu F, Biswas G (2020) Immune responses and growth performance of the aqueous methanolic extract of malva sylvestris in Oncorhynchus mykiss. Bull Mar Sci 9:159–167

    Article  Google Scholar 

  • Biller-Takahashi JD, Urbinati EC (2014) Fish Immunology. The modification and manipulation of the innate immune system: Brazilian studies. Anais Acad Bras Cien 86:1484–1506

    Article  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ 5:9–19

    Article  CAS  Google Scholar 

  • Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 186:343–355

    Article  CAS  PubMed  Google Scholar 

  • Bourne LC, Rice-Evans C (1998) Bioavailability of ferulic acid. Biochem Biophys Res Commun 253:222–227

    Article  CAS  PubMed  Google Scholar 

  • Boz H (2015) Ferulic acid in cereals—a review. Czech J Food Sci 33:1–7

    Article  Google Scholar 

  • Buranov AU, Mazza G (2009) Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents. Food Chem 115:1542–1548

    Article  CAS  Google Scholar 

  • Chen X, Guo Y, Jia G, Zhao H, Liu G, Huang Z (2019) Ferulic acid regulates muscle fiber type formation through the Sirt1/AMPK signaling pathway. Food Funct 10:259–265

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Lin Y, Miao L, Pan W, Ge X (2021) Ferulic acid alleviates lipopolysaccharide-induced acute liver injury in Megalobrama amblycephala. Aquaculture 532:735972

    Article  CAS  Google Scholar 

  • Chesson A, Provan GJ, Russell WR, Scobbie L, Richardson AJ, Stewart C (1999) Hydroxycinnamic acids in the digestive tract of livestock and humans. J Sci Food Agric 79:373–378

    Article  CAS  Google Scholar 

  • Chodkowska K, Ciecierska A, Majchrzak K, Ostaszewski P, Sadkowski T (2018) Simultaneous miRNA and mRNA transcriptome profiling of differentiating equine satellite cells treated with gamma-oryzanol and exposed to hydrogen peroxide. Nutrients 10:1871

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O (2020) Corrigendum: phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front Pharmacol 11:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Citarasu T (2012) Natural antimicrobial compounds for use in aquaculture. In: Infectious disease in aquaculture, pp 419–456

    Google Scholar 

  • Dai YJ, Jiang GZ, Yuan XY, Liu WB (2018) High-fat-diet-induced inflammation depresses the appetite of blunt snout bream (Megalobrama amblycephala) through the transcriptional regulation of leptin/mammalian target of rapamycin. Br J Nutr 120(12):1422–1431

    Article  CAS  PubMed  Google Scholar 

  • Dawood M, Koshio S (2019) Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev Aquac 12:1–16

    Google Scholar 

  • Dawood M, Metwally ES, El-Sharawy ME, Ghozlan AM, Ali M (2020) The influences of ferulic acid on the growth performance, haemato-immunological responses, and immune-related genes of Nile tilapia (Oreochromis niloticus) exposed to heat stress. Aquaculture 525:735320

    Article  CAS  Google Scholar 

  • de Oliveira Silva E, Batista R (2017) Ferulic acid and naturally occurring compounds bearing a feruloyl moiety: areview on their structures, occurrence, and potential health benefits. Compr Rev Food Sci Food Saf 16:580–616

    Article  PubMed  Google Scholar 

  • de Paiva LB, Goldbeck R, Santos WDD, Squina FM (2013) Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Braz J Pharm Sci 49:395–411

    Article  Google Scholar 

  • Dulong V, Kouassi MC, Labat B, Le Cerf D, Picton L (2018) Antioxidant properties and bioactivity of carboxymethylpullulan grafted with ferulic acid and of their hydrogels obtained by enzymatic reaction. Food Chem 262:21–29

    Article  CAS  PubMed  Google Scholar 

  • Elbesthi RTA, Zdemir KY, Tatan Y, Bilen S, Snmez AY (2020) Effects of ribwort plantain (Plantago lanceolata) extract on blood parameters, immune response, antioxidant enzyme activities, and growth performance in rainbow trout (Oncorhynchus mykiss ). Fish Physiol Biochem 46:1295–1307

    Article  CAS  PubMed  Google Scholar 

  • Ellis RE, Yuan J, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7:663–698

    Article  CAS  PubMed  Google Scholar 

  • Elmore S (2007) A review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faruque S, Albert J (1992) Genetic relation between Vibrio cholerae O1 strains in Ecuador and Bangladesh. Lancet 339:740–741

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Sun RC, Sun JX, Liu CF, He BH, Fan JS (2005) Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse. Anal Chim Acta 552:207–217

    Article  Google Scholar 

  • Fu W, Amenyogbe E, Yang E, Luo J, Huang J-S, Xie R-T, Chen G (2022) Effects of dietary supplementation of ferulic acid on growth performance, antioxidant ability, non-specific immunity, hepatic morphology and genes expression related to growth and immunity in juvenile hybrid grouper (Epinephelus fuscoguttatus♀ Ă— Epinephelus polyphekadion♂). Aquaculture 552:737988

    Article  CAS  Google Scholar 

  • Gao D, Xu Z, Zhang X, Wang H, Wang Y, Min W (2013) Molecular cloning, immunohistochemical localization, characterization and expression analysis of caspase-9 from the purse red common carp (Cyprinus carpio) exposed to cadmium. Aquat Toxicol 142–143:53–62

    Article  PubMed  Google Scholar 

  • González-RĂ­os H, Dávila-RamĂ­rez J, Peña-Ramos EA, Valenzuela-Melendres M, Zamorano-GarcĂ­a L, Islava-Lagarda TY, Valenzuela-Grijalva NV (2016) Dietary supplementation of ferulic acid to steers under commercial feedlot feeding conditions improves meat quality and shelf life. Anim Feed Sci Technol 222:111–121

    Article  Google Scholar 

  • Guerreiro I, Couto A, PĂ©rez-JimĂ©nez A, Oliva-Teles A, Enes P (2015) Gut morphology and hepatic oxidative status of European sea bass (Dicentrarchus labrax) juveniles fed plant feedstuffs or fishmeal-based diets supplemented with short-chain fructo-oligosaccharides and xylo-oligosaccharides. Br J Nutr 114:1975–1984

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Yi S, Yin S, Li F (2003) Determination of ferulic acid and adenosine in Angelicae Radix by micellar electrokinetic chromatography. Anal Bioanal Chem 375:840–843

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344:721–724

    Article  CAS  PubMed  Google Scholar 

  • Hashem NM, Gonzalez-Bulnes A, Simal-Gandara J (2020) Polyphenols in farm animals: source of reproductive gain or waste? Antioxidants 9:1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez RJ, Kravitz L (2003) The mystery of skeletal muscle hypertrophy. ACSMs Health Fit J 7:18–22

    Google Scholar 

  • Jacobson M, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell, 88:347–354

    Google Scholar 

  • Karga M, Kenanolu ON, Bilen S (2020) Investigation of antibacterial activity of two different medicinal plants extracts against fish pathogens. J Prod Agric 1:5–7

    Article  Google Scholar 

  • Kikuzaki H, Hisamoto M, Hirose K, Akiyama K, Taniguchi H (2002) Antioxidant properties of ferulic acid and its related compounds. J Agric Food Chem 50:2161–2168

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Rong T, Yang R, Cui SW (2006) Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem 95:466–473

    Article  CAS  Google Scholar 

  • King AM, Loiselle DS, Kohl P (2004) Force generation for locomotion of vertebrates: skeletal muscle overview. IEEE J Ocean Eng 29:684–691

    Article  Google Scholar 

  • Kothari D, Patel S, Kim SK (2019) Probiotic supplements might not be universally-effective and safe: a review. Biomed Pharmacother 111:537–547

    Article  CAS  PubMed  Google Scholar 

  • Kroon PA, Williams G (1999) Hydroxycinnamates in plants and food: current and future perspectives. J Sci Food Agric 79:355–361

    Article  CAS  Google Scholar 

  • Kumar N, Goel N (2019) Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnol Rep 24:e00370

    Article  Google Scholar 

  • Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4:86–93

    Article  CAS  Google Scholar 

  • Kumari J, Sahoo PK (2010) Dietary levamisole modulates the immune response and disease resistance of Asian catfish Clarias batrachus (Linnaeus). Aquac Res 37:500–509

    Article  Google Scholar 

  • Kuppusamy P, Soundha Rr Ajan I, Kim DH, Hwang IH, Choi KC (2019) 4-hydroxy-3-methoxy cinnamic acid accelerate myoblasts differentiation on C2C12 mouse skeletal muscle cells via AKT and ERK 1/2 activation. Phytomedicine 60:152873

    Article  CAS  PubMed  Google Scholar 

  • Lambert F, Zucca J, Ness F, Aigle M (2013) Production of ferulic acid and coniferyl alcohol by conversion of eugenol using a recombinant strain of Saccharomyces cerevisiae. Flavour Fragr J 29:14–21

    Article  Google Scholar 

  • Lazdins A, Miller C, Thomas CM (2015) Plasmids and the spread of antibiotic resistance. Biochemist 37:12–17

    Article  CAS  Google Scholar 

  • Li Y, Li L, Li J, ZhangL GF, Zhou G (2015) Effects of dietary supplementation with ferulic acid or vitamin E individually or in combination on meat quality and antioxidant capacity of finishing pigs. Asian-Australas J Anim Sci 28:374–381

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Ou S, Huang X, Luo Y, Jiang D (2004) Extraction of ferulic acid from enzymatic hydrolysate by ion-exchange adsorption. J Chin Clin Med 27:910–913

    Google Scholar 

  • Liu XH, Jiang S, Liu B, Zhou Q, Cunxin S, Zheng S, Han Y (2022) Dietary effect of ferulic acid on growth performance, physiological response, non-specific immunity and disease resistance of oriental river prawn (Macrobrachium nipponense). Aquac Rep 24:101162

    Article  Google Scholar 

  • MacĂ­as-Cruz U, Perard S, Vicente R, Lvarez FD, Torrentera-Olivera NG, González-RĂ­os H, Soto-Navarro SA, Rojo R, Meza-Herrera CA, Avendao-Reyes L (2014) Effects of free ferulic acid on productive performance, blood metabolites, and carcass characteristics of feedlot finishing ewe lambs. J Anim Sci 92:5762–5768

    Article  PubMed  Google Scholar 

  • MacĂ­as-Cruz U, Vicente-PĂ©rez R, LĂłpez-Baca MA, González-RĂ­os H, Correa-CalderĂłn A (2018) Effects of dietary ferulic acid on reproductive function and metabolism of pre-pubertal hairbreed ewes during the anestrous season. Theriogenology 119:220–224

    Article  PubMed  Google Scholar 

  • Mancuso C, Santangelo R (2014) Ferulic acid: pharmacological and toxicological aspects. Food Chem Toxicol 65:185–195

    Article  CAS  PubMed  Google Scholar 

  • Mani JS, Johnson JB, Steel JC, Broszczak DA, Neilsen PM, Walsh KB, Naiker M (2020) Natural product-derived phytochemicals as potential agents against coronaviruses: a review. Virus Res 284:197989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquardt RR, Li S (2018) Antimicrobial resistance in livestock: advances and alternatives to antibiotics. Anim Front 8:30–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathew S, Abraham TE (2005) Studies on the production of feruloyl esterase from cereal brans and sugar cane bagasse by microbial fermentation. Enzyme Microb Technol 36:565–570

    Article  CAS  Google Scholar 

  • Mattila P, Hellström MJ (2007) Phenolic acids in potatoes, vegetables, and some of their products. J Food Compost Anal 20:152–160

    Article  CAS  Google Scholar 

  • Mattila P, Kumpulainen J (2002) Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J Agric Food Chem 50:3660–3667

    Article  CAS  PubMed  Google Scholar 

  • Mattila P, Pihlava JM, Hellström MJ (2005) Contents of phenolic acids, alkyl and alkenylresorcinols, and avenanthramides in commercial grain products. J Agric Food Chem 53:8290–8295

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R (2008) Review article: origin and physiological roles of inflammation. Nature 454:428–435

    Article  CAS  PubMed  Google Scholar 

  • Mei HN, Hadi NA (2022) Extraction of ferulic acid from oil palm pressed fiber by a choline chloride based deep eutectic solvent. J Am Oil Chem Soc 4:100155

    Google Scholar 

  • Melo TD, Lima PR, Carvalho K, Fontenele TM, Solon F, TomĂ© A, Lemos TD, Fonseca SC, Santos FA, Rao VS (2017) Ferulic acid lowers body weight and visceral fat accumulation via modulation of enzymatic, hormonal and inflammatory changes in a mouse model of high-fat diet-induced obesity. Braz J MedBiol Res 50:e5630

    Article  Google Scholar 

  • Min JY, Kang SM, Park DJ, Kim YD, Jung HN, Yang JK, Seo WT, Kim SW, Karigar CS, Choi MS (2006) Enzymatic release of ferulic acid from Ipomoea batatas L. (sweet potato) stem. Biotechnol Bioprocess Eng 11:372–376

    Article  CAS  Google Scholar 

  • Mohamed GA, Amhamed ID, Almabrok AA, Barka A, Elbeshti RT (2018) Effect of celery (Apium graveolens) extract on the growth, haematology, immune response and digestive enzyme activity of common carp (Cyprinus carpio). Bull Mar Sci 7:51–59

    Article  Google Scholar 

  • Mustafa SK, Oyouni A, Aljohani M, Ahmad MA (2020) Polyphenols more than an antioxidant: role and scope. J Pure Appl Microbiol 14:47–61

    Article  CAS  Google Scholar 

  • Naowaboot J, Piyabhan P, Tingpej P, Munkong N, Parklak W, Pannangpetch P (2018) Anti-insulin resistant effect of ferulic acid on high fat diet-induced obese mice. Asian Pac J Trop Biomed 8:604–608

    Article  Google Scholar 

  • Nomura E, Kashiwada A, Hosoda A, Nakamura K, Morishita H, Tsuno T, Taniguchi H (2003) Synthesis of amide compounds of ferulic acid, and their stimulatory effects on insulin secretion in vitro. Bioorg Med Chem 11:3807–3813

    Article  CAS  PubMed  Google Scholar 

  • Overhage J, Steinbuchel A, Priefert H (2002) Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstonia eutropha H16. Appl Environ Microbiol 68:4315–4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ă–zçelik H, TaĹźtan Y, Terzi E, Sönmez AY (2020) Use of onion (Allium cepa) and garlic (Allium sativum) wastes for the prevention of fungal disease (Saprolegnia parasitica) on eggs of rainbow trout (Oncorhynchus mykiss). J Fish Dis 43:1325–1330

    Article  PubMed  Google Scholar 

  • Ramar M, Manikandan B, Raman T, Priyadarsini A, Palanisamy S, Velayudam M, Munusamy A, Prabhu NM, Vaseeharan B (2012) Protective effect of ferulic acid and resveratrol against alloxan-induced diabetes in mice. Eur J Pharmacol 690:226–235

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Rinaldi SF, Hutchinson JL, Rossi AG, Norman JE (2011) Anti-inflammatory mediators as physiological and pharmacological regulators of parturition. Expert Rev Clin Immunol 7:675–696

    Article  CAS  PubMed  Google Scholar 

  • Rizzo AM, Berselli P, Zava S, Montorfano G, Negroni M, Corsetto P, Berra B (2010) Endogenous antioxidants and radical scavengers. Springer, New York

    Book  Google Scholar 

  • Romarheim OH, Zhang C, Penn M, Liu YJ, Tian LX, Skrede A, Krogdahl Ă…, Storebakken T (2008) Growth and intestinal morphology in cobia (Rachycentron canadum) fed extruded diets with two types of soybean meal partly replacing fish meal. Aquac Nutr 14:174–180

    Article  CAS  Google Scholar 

  • Roy S, Metya SK, Rahaman N, Sannigrahi S, Ahmed F (2014) Ferulic acid in the treatment of post-diabetes testicular damage: relevance to the down regulation of apoptosis correlates with antioxidant status via modulation of TGF-β1, IL-1β and Akt signalling. Cell Biochem Funct 32:115–124

    Article  CAS  PubMed  Google Scholar 

  • Sakai S, Kawamata H, Kogure T, Mantani N, Terasawa K, Umatake M, Ochiai H (1999) Inhibitory effect of ferulic acid and isoferulic acid on the production of macrophage inflammatory protein-2 in response to respiratory syncytial virus infection in RAW264.7 cells. Mediat Inflamm 8:173–175

    Article  CAS  Google Scholar 

  • Salazar-Lopez N, Astiazaran-GarcĂ­a H, Gonzalez-Aguilar G, Loarca-Pina G, Ezquerra-Brauer J, DomĂ­nguez-Avila J (2017) Ferulic acid on glucose dysregulation, dyslipidemia, and inflammation in diet-induced obese rats: an integrated study. Nutrients 9:1–13

    Article  Google Scholar 

  • Salem MOA, Salem TA, YĂĽrĂĽten Zdemir K, Snmez AY, Bilen S, GĂĽney K (2021) Antioxidant enzyme activities and immune responses in rainbow trout (Onchorhynchus mykiss) juveniles fed diets supplemented with dandelion (Taraxacum officinalis) and lichen (Usnea barbata) extracts. Fish Physiol Biochem 47:1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Sales J (2009) The Effect of fish meal replacement by soybean products on fish growth: ameta-analysis. Br J Nutr 102:1709–1722

    Article  CAS  PubMed  Google Scholar 

  • Sanger J, Sanger J, Franzini-Armstrong C (2004) Assembly of the skeletal muscle cell. Myology 3:35–65

    Google Scholar 

  • Sönmez A (2017) Evaluating two different additive levels of fully autolyzed yeast, Saccharomyces cerevisiae, on rainbow trout (Oncorhynchus mykiss) growth, performance, liver histology and fatty acid composition. Turk J Fish Aquat 17:379–385

    Google Scholar 

  • Steller H (1995) Mechanisms and genes of cellular suicide. Science 267:1445

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Li S, Song H, Tian S (2006) Extraction of ferulic acid from Angelica sinensis with supercritical CO2. Nat Prod Res 20:835–841

    Article  CAS  PubMed  Google Scholar 

  • Tee-Ngam P, Nunant N, Rattanarat P, Siangproh W, Chailapakul O (2013) Simple and rapid determination of ferulic acid levels in food and cosmetic samples sing paper-based platforms. Sensors (Basel, Switzerland) 13:13039–13053

    Article  CAS  PubMed  Google Scholar 

  • Terzi E, Kucukkosker B, Bilen S, Kenanolu ON, Corum O, Ă–zbek M, Parug SS (2021) A novel herbal immunostimulant for rainbow trout (Oncorhynchus mykiss) against Yersinia ruckeri. Fish Shellfish Immunol 110:55–66

    Article  CAS  PubMed  Google Scholar 

  • Tilay A, Bule M, Kishenkumar J, Annapure U (2008) Preparation of ferulic acid from agricultural wastes: its improved extraction and purification. J Agric Food Chem 56:7644–7648

    Article  CAS  PubMed  Google Scholar 

  • Uraji M, Kimura M, Inoue Y, Kawakami K, Hatanaka T (2013) Enzymatic production of ferulic acid from defatted rice bran by using a combination of bacterial enzymes. Appl Biochem Biotechnol 171:1085–1093

    Article  CAS  PubMed  Google Scholar 

  • ValĂ©rio R, Cadima M, Crespo JG, Brazinha C (2021) Extracting ferulic acid from corn fibre using mild alkaline extraction: apilot scale study. Waste Biomass Valor 13:287–297

    Article  Google Scholar 

  • Villa-Cruz V, Davila J, Viana MT, Vazquez-Duhalt R (2009) Effect of broccoli (Brassica oleracea) and its phytochemical sulforaphane in balanced diets on the detoxification enzymes levels of tilapia (Oreochromis niloticus) exposed to a carcinogenic and mutagenic pollutant. Chemosphere 74:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Vinegar R, Scrheiber W, Hugo R (1969) Biphasic development of carragenin edema in rats. J Pharmacol Exp Ther 166:96–103

    CAS  PubMed  Google Scholar 

  • Wang Y, Wang W, Wang R, Meng Z, Duan Y, An X, Qi J (2019) Dietary supplementation of ferulic acid improves performance and alleviates oxidative stress of lambs in a cold environment. Can J Anim Sci 99:705–712

    Article  CAS  Google Scholar 

  • Wang Y, Chen X, Huang Z, Chen D, Yu B, Chen H (2021) Effects of dietary ferulic acid supplementation on growth performance and skeletal muscle fiber type conversion in weaned piglets. J Sci Food Agric 101(12):5116–5123

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Ushio H (2017) Ferulic acid promotes hypertrophic growth of fast skeletal muscle in zebrafish model. Nutrients 9:E1066. https://doi.org/10.3390/nu9101066

    Article  CAS  Google Scholar 

  • Williams RJ, Spencer J, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849

    Article  CAS  PubMed  Google Scholar 

  • Williams AR, Lukasz K, Hajar FA, Peter N, Kerstin S, Nielsen DS, Thamsborg SM, Aroian RV (2017) A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune responses and gut microbiota composition in pigs. Plos One 12:e0186546

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu XR, Liu CQ, Feng BS, Liu ZJ (2014) Dysregulation of mucosal immune response in pathogenesis of inflammatory bowel disease. World J Gastroenterol 20:3255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh TS, Hsu CC, Yang SC, Hsu MC, Liu JF (2014) Angelica Sinensis promotes myotube hypertrophy through the PI3K/Akt/mTOR pathway. BMC Complement Altern Med 14:144–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Yildiztugay E, Ozfidan-Konakci C, Karahan H, Kucukoduk M, Turkan I (2018) Ferulic acid confers tolerance against excess boron by regulating ROS levels and inducing antioxidant system in wheat leaves (Triticum aestivum). Environ Exp Bot 161:193–202

    Article  Google Scholar 

  • Yin X, Liu W, Chen H, Qi C, Chen H, Niu H, Yang J, Kwok K, Dong W (2002) Effects of ferulic acid on muscle development and intestinal microbiota of zebrafish. J Anim Physiol Anim Nutr 106(2):429–440. https://doi.org/10.1111/jpn.1363

    Article  Google Scholar 

  • Yu L, Wu F, Liu W, Tian J, Lu X, Wen H (2017) Semisynthetic ferulic acid derivative: an efficient feed additive for genetically improved farmed tilapia (Oreochromis niloticus). Aquac Res 48:5017–5028

    Article  CAS  Google Scholar 

  • Yu LJ, Wu F, Jiang M, Yang CG, Liu W, Tian J, Lu X, Wen H (2018) Ferulic acid: a natural compound as an efficient feed additive for GIFT (Oreochromis niloticus). Aquacult Nutr 24:27–35

    Article  CAS  Google Scholar 

  • Yu L, Wen H, Jiang M, Wu F, Liu W (2020) Effects of ferulic acid on intestinal enzyme activities, morphology, microbiome composition of genetically improved farmed tilapia (Oreochromis niloticus) fed oxidized fish oil. Aquaculture 528:735543

    Article  CAS  Google Scholar 

  • Zhang X, Han B, Feng ZM, Yang YN, Jiang JS, Zhang PC (2018) Ferulic acid derivatives from Ligusticum chuanxiong. Fitoterapia 125:147–154

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Egashira Y, Sanada H (2005) Phenolic antioxidants richly contained in corn bran are slightly bioavailable in rats. J Agric Food Chem 53:5030–5035

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Moghadasian MH (2008) Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem 109:691–702

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abasubong, K.P., Gabriel, N.N., Adjoumani, JJ.Y. (2023). Ferulic Acid as Feed Additives in Aquaculture: A Review on Growth, Immune Response, and Antioxidant Status of Finfish. In: Gabriel, N.N., Omoregie, E., Abasubong, K.P. (eds) Emerging Sustainable Aquaculture Innovations in Africa. Sustainability Sciences in Asia and Africa(). Springer, Singapore. https://doi.org/10.1007/978-981-19-7451-9_10

Download citation

Publish with us

Policies and ethics