Skip to main content

C-Reactive Protein (CRP): A Potent Inflammation Biomarker in Psychiatric Disorders

  • Chapter
  • First Online:
Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1411))

Abstract

An increasing number of studies have investigated the role of inflammation in psychiatric disorders, by demonstrating how an altered/dysfunctional immunological and inflammatory system may underpin a psychiatric condition. Particularly, several studies specifically investigated the role of a neuroinflammatory biomarker, named C-reactive protein (CRP), in psychiatric disorders. Overall, even though scientific literature so far published still does not appear definitive, CRP is more likely reported to be elevated in several psychiatric disorders, including schizophrenia, mood disorders, anxiety disorders and post-traumatic stress disorder. Moreover, a low-grade inflammation (CRP >3 mg/L) has been more likely observed in a subgroup of patients affected with a more severe psychopathological symptomatology, more treatment resistance and worst clinical mental illness course, strengthening the hypothesis of the need for a different clinical and prognostic characterization based on this concomitant neuroinflammatory predisposition. However, even though further research studies are needed to confirm this preliminary evidence, CRP may represent a potential clinical routine biomarker which could be integrated in the clinical routine practice to better characterize clinical picture and course as well as address clinicians towards a personalized treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marnell L, Mold C, Du Clos TW. C-reactive protein: ligands, receptors and role in inflammation. Clin Immunol. 2005;117(2):104–11. https://doi.org/10.1016/j.clim.2005.08.004.

    Article  CAS  PubMed  Google Scholar 

  2. Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754. https://doi.org/10.3389/fimmu.2018.00754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nehring SM, Goyal A, Bansal P, Patel BC. C reactive protein. Treasure Island, FL: StatPearls; 2021. https://www.ncbi.nlm.nih.gov/books/NBK441843/.

    Google Scholar 

  4. Tillett WS, Francis T. Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J Exp Med. 1930;52(4):561–71. https://doi.org/10.1084/jem.52.4.561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu Y, Potempa LA, El Kebir D, Filep JG. C-reactive protein and inflammation: conformational changes affect function. Biol Chem. 2015;396(11):1181–97. https://doi.org/10.1515/hsz-2015-0149.

    Article  CAS  PubMed  Google Scholar 

  6. Thiele JR, Habersberger J, Braig D, Schmidt Y, Goerendt K, Maurer V, et al. Dissociation of pentameric to monomeric C-reactive protein localizes and aggravates inflammation: in vivo proof of a powerful proinflammatory mechanism and a new anti-inflammatory strategy. Circulation. 2014;130(1):35–50. https://doi.org/10.1161/CIRCULATIONAHA.113.007124.

    Article  CAS  PubMed  Google Scholar 

  7. Joseph J, Depp C, Martin AS, Daly RE, Glorioso DK, Palmer BW, et al. Associations of high sensitivity C-reactive protein levels in schizophrenia and comparison groups. Schizophr Res ottobre. 2015;168(1–2):456–60. https://doi.org/10.1016/j.schres.2015.08.019.

    Article  Google Scholar 

  8. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107(3):363–9. https://doi.org/10.1161/01.cir.0000053730.47739.3c.

    Article  PubMed  Google Scholar 

  9. Orsolini L, Sarchione F, Vellante F, Fornaro M, Matarazzo I, Martinotti G, et al. Protein-C reactive as biomarker predictor of schizophrenia phases of illness?: a systematic review. Curr Neuropharmacol. 2018;16(5):583–606. https://doi.org/10.2174/1570159X16666180119144538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO, Criqui M, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107(3):499–511. https://doi.org/10.1161/01.cir.0000052939.59093.45.

    Article  PubMed  Google Scholar 

  11. Moylan S, Berk M, Dean OM, Samuni Y, Williams LJ, O’Neil A, et al. Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev. 2014;45:46–62. https://doi.org/10.1016/j.neubiorev.2014.05.007.

    Article  CAS  PubMed  Google Scholar 

  12. Michopoulos V, Powers A, Gillespie CF, Ressler KJ, Jovanovic T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology. 2017;42(1):254–70. https://doi.org/10.1038/npp.2016.146.

    Article  CAS  PubMed  Google Scholar 

  13. Rosenblat JD, McIntyre RS. Bipolar disorder and immune dysfunction: epidemiological findings, proposed pathophysiology and clinical implications. Brain Sci. 2017;7(11):E144.

    Article  Google Scholar 

  14. Dubois T, Reynaert C, Jacques D, Lepiece B, Patigny P, Zdanowicz N. Immunity and psychiatric disorders: variabilities of immunity biomarkers are they specific? Psychiatr Danub. 2018;30(Suppl 7):447–51.

    CAS  PubMed  Google Scholar 

  15. Horn SR, Long MM, Nelson BW, Allen NB, Fisher PA, Byrne ML. Replication and reproducibility issues in the relationship between C-reactive protein and depression: a systematic review and focused meta-analysis. Brain Behav Immun. 2018;73:85–114. https://doi.org/10.1016/j.bbi.2018.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Renna ME, O’Toole MS, Spaeth PE, Lekander M, Mennin DS. The association between anxiety, traumatic stress, and obsessive-compulsive disorders and chronic inflammation: a systematic review and meta-analysis. Depress Anxiety. 2018;35(11):1081–94. https://doi.org/10.1002/da.22790.

    Article  PubMed  Google Scholar 

  17. Felger JC, Haroon E, Patel TA, Goldsmith DR, Wommack EC, Woolwine BJ, et al. What does plasma CRP tell us about peripheral and central inflammation in depression? Mol Psychiatry. 2020;25(6):1301–11. https://doi.org/10.1038/s41380-018-0096-3.

    Article  CAS  PubMed  Google Scholar 

  18. Sulhan S, Lyon KA, Shapiro LA, Huang JH. Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: pathophysiology and potential therapeutic targets. J Neurosci Res. 2020;98(1):19–28. https://doi.org/10.1002/jnr.24331.

    Article  CAS  PubMed  Google Scholar 

  19. Turna J, Grosman Kaplan K, Anglin R, Patterson B, Soreni N, Bercik P, et al. The gut microbiome and inflammation in obsessive-compulsive disorder patients compared to age- and sex-matched controls: a pilot study. Acta Psychiatr Scand. 2020;142(4):337–47. https://doi.org/10.1111/acps.13175.

    Article  CAS  PubMed  Google Scholar 

  20. Caldirola D, Daccò S, Cuniberti F, Grassi M, Lorusso S, Diaferia G, et al. Elevated C-reactive protein levels across diagnoses: the first comparison among inpatients with major depressive disorder, bipolar disorder, or obsessive–compulsive disorder. J Psychosom Res. 2021;150:110604. https://doi.org/10.1016/j.jpsychores.2021.110604.

    Article  PubMed  Google Scholar 

  21. Woo JJ, Pouget JG, Zai CC, Kennedy JL. The complement system in schizophrenia: where are we now and what’s next? Mol Psychiatry. 2020;25(1):114–30. https://doi.org/10.1038/s41380-019-0479-0.

    Article  CAS  PubMed  Google Scholar 

  22. D’Mello C, Le T, Swain MG. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factor signaling during peripheral organ inflammation. J Neurosci. 2009;29(7):2089–102. https://doi.org/10.1523/JNEUROSCI.3567-08.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McKim DB, Weber MD, Niraula A, Sawicki CM, Liu X, Jarrett BL, et al. Microglial recruitment of IL-1β-producing monocytes to brain endothelium causes stress-induced anxiety. Mol Psychiatry. 2018;23(6):1421–31. https://doi.org/10.1038/mp.2017.64.

    Article  CAS  PubMed  Google Scholar 

  24. Wesselingh R, Butzkueven H, Buzzard K, Tarlinton D, O’Brien TJ, Monif M. Innate immunity in the central nervous system: a missing piece of the autoimmune encephalitis puzzle? Front Immunol. 2019;10:2066. https://doi.org/10.3389/fimmu.2019.02066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aveleira CA, Lin C-M, Abcouwer SF, Ambrosio AF, Antonetti DA. TNF- signals through PKC/NF- B to alter the tight junction complex and increase retinal endothelial cell permeability. Diabetes. 2010;59(11):2872–82. https://doi.org/10.2337/db09-1606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci. 2017;20(12):1752–60. https://doi.org/10.1016/j.bbi.2016.09.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jeon M-T, Kim K-S, Kim ES, Lee S, Kim J, Hoe H-S, et al. Emerging pathogenic role of peripheral blood factors following BBB disruption in neurodegenerative disease. Ageing Res Rev. 2021;68:101333. https://doi.org/10.1016/j.arr.2021.101333.

    Article  CAS  PubMed  Google Scholar 

  28. Prakash R, Carmichael ST. Blood−brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury. Curr Opin Neurol. 2015;28(6):556–64. https://doi.org/10.1097/WCO.0000000000000248.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kuhlmann CRW, Librizzi L, Closhen D, Pflanzner T, Lessmann V, Pietrzik CU, et al. Mechanisms of C-reactive protein-induced blood–brain barrier disruption. Stroke. 2009;40(4):1458–66. https://doi.org/10.1161/STROKEAHA.108.535930.

    Article  CAS  PubMed  Google Scholar 

  30. Lim GY, Tam WW, Lu Y, Ho CS, Zhang MW, Ho RC. Prevalence of depression in the community from 30 countries between 1994 and 2014. Sci Rep. 2018;8(1):2861. https://doi.org/10.1038/s41598-018-21243-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perez-Caballero L, Torres-Sanchez S, Romero-López-Alberca C, González-Saiz F, Mico JA, Berrocoso E. Monoaminergic system and depression. Cell Tissue Res. 2019;377(1):107–13. https://doi.org/10.1007/s00441-018-2978-8.

    Article  CAS  PubMed  Google Scholar 

  32. Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis. 2009;24(1):27–53. https://doi.org/10.1007/s11011-008-9118-1.

    Article  CAS  PubMed  Google Scholar 

  33. Keller J, Gomez R, Williams G, Lembke A, Lazzeroni L, Murphy GM, et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry. 2017;22(4):527–36. https://doi.org/10.1038/mp.2016.120.

    Article  CAS  PubMed  Google Scholar 

  34. Czarny P, Wigner P, Galecki P, Sliwinski T. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;80:309–21. https://doi.org/10.1016/j.pnpbp.2017.06.036.

    Article  CAS  Google Scholar 

  35. Gałecki P, Talarowska M. Inflammatory theory of depression. Psychiatr Pol. 2018;52(3):437–47.

    Article  PubMed  Google Scholar 

  36. Uchida S, Yamagata H, Seki T, Watanabe Y. Epigenetic mechanisms of major depression: targeting neuronal plasticity. Psychiatry Clin Neurosci. 2018;72(4):212–27. https://doi.org/10.1111/pcn.12621.

    Article  PubMed  Google Scholar 

  37. Gałecki P, Talarowska M. Neurodevelopmental theory of depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;80:267–72. https://doi.org/10.1016/j.pnpbp.2017.05.023.

    Article  CAS  Google Scholar 

  38. Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pariante CM, Howes OD. Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun. 2020;87:901–9. https://doi.org/10.1016/j.bbi.2020.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57. https://doi.org/10.1016/j.biopsych.2009.09.033.

    Article  CAS  PubMed  Google Scholar 

  40. Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimäki M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav Immun. 2015;49:206–15. https://doi.org/10.1016/j.bbi.2015.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21(12):1696–709. https://doi.org/10.1038/mp.2016.3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nobis A, Zalewski D, Waszkiewicz N. Peripheral markers of depression. J Clin Med. 2020;9(12):3793. https://doi.org/10.3390/jcm9123793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dantzer R. Cytokine, sickness behavior, and depression. Neurol Clin. 2006;24(3):441–60. https://doi.org/10.1016/j.ncl.2006.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wium-Andersen MK, Ørsted DD, Nielsen SF, Nordestgaard BG. Elevated C-reactive protein levels, psychological distress, and depression in 73 131 individuals. JAMA Psychiat. 2013;70(2):176. https://doi.org/10.1001/2013.jamapsychiatry.102.

    Article  CAS  Google Scholar 

  45. Bjerkeset O, Romild U, Smith GD, Hveem K. The associations of high levels of C-reactive protein with depression and myocardial infarction in 9258 women and men from the HUNT population study. Psychol Med. 2011;41(2):345–52. https://doi.org/10.1017/S0033291710000887.

    Article  CAS  PubMed  Google Scholar 

  46. Pasco JA, Nicholson GC, Williams LJ, Jacka FN, Henry MJ, Kotowicz MA, et al. Association of high-sensitivity C-reactive protein with de novo major depression. Br J Psychiatry. 2010;197(5):372–7. https://doi.org/10.1192/bjp.bp.109.076430.

    Article  PubMed  Google Scholar 

  47. Hickman RJ, Khambaty T, Stewart JC. C-reactive protein is elevated in atypical but not nonatypical depression: data from the National Health and nutrition examination survey (NHANES) 1999–2004. J Behav Med. 2014;37(4):621–9. https://doi.org/10.1007/s10865-013-9510-0.

    Article  PubMed  Google Scholar 

  48. Duivis HE, Vogelzangs N, Kupper N, de Jonge P, Penninx BWJH. Differential association of somatic and cognitive symptoms of depression and anxiety with inflammation: findings from the Netherlands study of depression and anxiety (NESDA). Psychoneuroendocrinology. 2013;38(9):1573–85. https://doi.org/10.1016/j.psyneuen.2013.01.002.

    Article  CAS  PubMed  Google Scholar 

  49. Zalli A, Jovanova O, Hoogendijk WJG, Tiemeier H, Carvalho LA. Low-grade inflammation predicts persistence of depressive symptoms. Psychopharmacology. 2016;233(9):1669–78. https://doi.org/10.1007/s00213-015-3919-9.

    Article  CAS  PubMed  Google Scholar 

  50. Gimeno D, Kivimäki M, Brunner EJ, Elovainio M, De Vogli R, Steptoe A, et al. Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study. Psychol Med. 2009;39(3):413–23. https://doi.org/10.1017/S0033291708003723.

    Article  CAS  PubMed  Google Scholar 

  51. Köhler-Forsberg O, Buttenschøn HN, Tansey KE, Maier W, Hauser J, Dernovsek MZ, et al. Association between C-reactive protein (CRP) with depression symptom severity and specific depressive symptoms in major depression. Brain Behav Immun. 2017;62:344–50. https://doi.org/10.1016/j.bbi.2017.02.020.

    Article  CAS  PubMed  Google Scholar 

  52. Chamberlain SR, Cavanagh J, de Boer P, Mondelli V, Jones DNC, Drevets WC, et al. Treatment-resistant depression and peripheral C-reactive protein. Br J Psychiatry. 2019;214(1):11–9. https://doi.org/10.1192/bjp.2018.66.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mocking RJT, Nap TS, Westerink AM, Assies J, Vaz FM, Koeter MWJ, et al. Biological profiling of prospective antidepressant response in major depressive disorder: associations with (neuro)inflammation, fatty acid metabolism, and amygdala-reactivity. Psychoneuroendocrinology. 2017;79:84–92. https://doi.org/10.1016/j.psyneuen.2017.02.019.

    Article  CAS  PubMed  Google Scholar 

  54. Uher R, Tansey KE, Dew T, Maier W, Mors O, Hauser J, et al. An inflammatory biomarker as a differential predictor of outcome of depression treatment with Escitalopram and Nortriptyline. Am J Psychiatry. 2014;171(12):1278–86. https://doi.org/10.1176/appi.ajp.2014.14010094.

    Article  PubMed  Google Scholar 

  55. Khandaker GM, Pearson RM, Zammit S, Lewis G, Jones PB. Association of Serum Interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiat. 2014;71(10):1121. https://doi.org/10.1001/jamapsychiatry.2014.1332.

    Article  CAS  Google Scholar 

  56. Osimo EF, Baxter LJ, Lewis G, Jones PB, Khandaker GM. Prevalence of low-grade inflammation in depression: a systematic review and meta-analysis of CRP levels. Psychol Med. 2019;49(12):1958–70. https://doi.org/10.1017/S0033291719001454.

    Article  PubMed  PubMed Central  Google Scholar 

  57. O’Brien SM, Scully P, Fitzgerald P, Scott LV, Dinan TG. Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J Psychiatr Res. 2007;41(3–4):326–31. https://doi.org/10.1016/j.jpsychires.2006.05.013.

    Article  PubMed  Google Scholar 

  58. Chang HH, Lee IH, Gean PW, Lee S-Y, Chi MH, Yang YK, et al. Treatment response and cognitive impairment in major depression: association with C-reactive protein. Brain Behav Immun. 2012;26(1):90–5. https://doi.org/10.1016/j.bbi.2011.07.239.

    Article  CAS  PubMed  Google Scholar 

  59. Tuglu C, Kara SH, Caliyurt O, Vardar E, Abay E. Increased serum tumor necrosis factor-alpha levels and treatment response in major depressive disorder. Psychopharmacology. 2003;170(4):429–33. https://doi.org/10.1007/s00213-003-1566-z.

    Article  CAS  PubMed  Google Scholar 

  60. Köhler CA, Freitas TH, Stubbs B, Maes M, Solmi M, Veronese N, et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: systematic review and meta-analysis. Mol Neurobiol. 2017;55(5):4195–206. https://doi.org/10.1007/s12035-017-0632-1.

    Article  CAS  PubMed  Google Scholar 

  61. Mosiołek A, Pięta A, Jakima S, Zborowska N, Mosiołek J, Szulc A. Effects of antidepressant treatment on peripheral biomarkers in patients with major depressive disorder (MDD). J Clin Med. 2021;10(8):1706. https://doi.org/10.3390/jcm10081706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiat. 2013;70(1):31. https://doi.org/10.1001/2013.jamapsychiatry.4.

    Article  CAS  Google Scholar 

  63. Köhler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O, et al. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiat. 2014;71(12):1381. https://doi.org/10.1001/jamapsychiatry.2014.1611.

    Article  Google Scholar 

  64. Eyre HA, Baune BT. Anti-inflammatory intervention in depression. JAMA Psychiatry. 2015;72(5):511. https://doi.org/10.1001/jamapsychiatry.2014.3128.

    Article  PubMed  Google Scholar 

  65. Eyre HA, Air T, Proctor S, Rositano S, Baune BT. A critical review of the efficacy of non-steroidal anti-inflammatory drugs in depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015;57:11–6. https://doi.org/10.1016/j.pnpbp.2014.10.003.

    Article  CAS  Google Scholar 

  66. Kappelmann N, Lewis G, Dantzer R, Jones PB, Khandaker GM. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry. 2018;23(2):335–43. https://doi.org/10.1038/mp.2016.167.

    Article  CAS  PubMed  Google Scholar 

  67. Bekhbat M, Chu K, Le N-A, Woolwine BJ, Haroon E, Miller AH, et al. Glucose and lipid-related biomarkers and the antidepressant response to infliximab in patients with treatment-resistant depression. Psychoneuroendocrinology. 2018;98:222–9. https://doi.org/10.1016/j.psyneuen.2018.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bavaresco DV, Uggioni MLR, Ferraz SD, Marques RMM, Simon CS, Dagostin VS, et al. Efficacy of infliximab in treatment-resistant depression: a systematic review and meta-analysis. Pharmacol Biochem Behav. 2020;188:172838. https://doi.org/10.1016/j.pbb.2019.172838.

    Article  CAS  PubMed  Google Scholar 

  69. Liu H, Zhang Y, Gao Y, Zhang Z. Elevated levels of Hs-CRP and IL-6 after delivery are associated with depression during the 6 months post partum. Psychiatry Res. 2016;243:43–8. https://doi.org/10.1016/j.psychres.2016.02.022.

    Article  CAS  PubMed  Google Scholar 

  70. Buglione-Corbett R, Deligiannidis K, Leung K, Zhang N, Lee M, Rosal M, et al. Expression of inflammatory markers in women with perinatal depressive symptoms. Arch Womens Ment Health. 2018;21(6):671–9. https://doi.org/10.1007/s00737-018-0834-1.

    Article  CAS  PubMed  Google Scholar 

  71. Lambert M, Gressier F. Biomarqueurs de L’inflammation et dépression du post-partum: une revue systématique de la littérature. Can J Psychiatr. 2019;64(7):471–81. https://doi.org/10.1177/0706743719828970.

    Article  Google Scholar 

  72. Miller ES, Hoxha D, Pinheiro E, Grobman WA, Wisner KL. The association of serum C-reactive protein with the occurrence and course of postpartum depression. Arch Womens Ment Health. 2019;22(1):129–32.

    Article  PubMed  Google Scholar 

  73. Roomruangwong C, Kanchanatawan B, Sirivichayakul S, Mahieu B, Nowak G, Maes M. Lower serum zinc and higher CRP strongly predict prenatal depression and Physio-somatic symptoms, which all together predict postnatal depressive symptoms. Mol Neurobiol. 2017;54(2):1500–12. https://doi.org/10.1007/s12035-016-9741-5.

    Article  CAS  PubMed  Google Scholar 

  74. Aas M, Vecchio C, Pauls A, Mehta M, Williams S, Hazelgrove K, et al. Biological stress response in women at risk of postpartum psychosis: the role of life events and inflammation. Psychoneuroendocrinology. 2020;113:104558. https://doi.org/10.1016/j.psyneuen.2019.104558.

    Article  CAS  PubMed  Google Scholar 

  75. Morgan JE, Lee SS, Mahrer NE, Guardino CM, Davis EP, Shalowitz MU, et al. Prenatal maternal C-reactive protein prospectively predicts child executive functioning at ages 4–6 years. Dev Psychobiol. 2020;62(8):1111–23. https://doi.org/10.1002/dev.21982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hunter SK, Hoffman MC, D’Alessandro A, Noonan K, Wyrwa A, Freedman R, et al. Male fetus susceptibility to maternal inflammation: C-reactive protein and brain development. Psychol Med. 2021;51(3):450–9. https://doi.org/10.1017/S0033291719003313.

    Article  PubMed  Google Scholar 

  77. Shao S, Wang J, Huang K, Wang S, Liu H, Wan S, et al. Prenatal pregnancy-related anxiety predicts boys’ ADHD symptoms via placental C-reactive protein. Psychoneuroendocrinology. 2020;120:104797. https://doi.org/10.1016/j.psyneuen.2020.104797.

    Article  CAS  PubMed  Google Scholar 

  78. Canetta S, Sourander A, Surcel H-M, Hinkka-Yli-Salomäki S, Leiviskä J, Kellendonk C, et al. Elevated maternal C-reactive protein and increased risk of schizophrenia in a national birth cohort. Am J Psychiatry. 2014;171(9):960–8. https://doi.org/10.1176/appi.ajp.2014.13121579.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Brown AS, Sourander A, Hinkka-Yli-Salomäki S, McKeague IW, Sundvall J, Surcel H-M. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol Psychiatry. 2014;19(2):259–64. https://doi.org/10.1038/mp.2012.197.

    Article  CAS  PubMed  Google Scholar 

  80. Chudal R, Sourander A, Surcel H-M, Sucksdorff D, Hinkka-Yli-Salomäki S, Brown AS. Gestational maternal C—reactive protein and risk of bipolar disorder among young individuals in a Nationwide birth cohort. J Affect Disord. 2017;208:41–6. https://doi.org/10.1016/j.jad.2016.08.056.

    Article  CAS  PubMed  Google Scholar 

  81. Chudal R, Brown AS, Gyllenberg D, Hinkka-Yli-Salomäki S, Sucksdorff M, Surcel H-M, et al. Maternal serum C-reactive protein (CRP) and offspring attention deficit hyperactivity disorder (ADHD). Eur Child Adolesc Psychiatry. 2020;29(2):239–47. https://doi.org/10.1007/s00787-019-01372-y.

    Article  PubMed  Google Scholar 

  82. Carvalho AF, Firth J, Vieta E, Ropper AH. Bipolar disorder. N Engl J Med. 2020;383(1):58–66. https://doi.org/10.1056/NEJMra1906193.

    Article  CAS  PubMed  Google Scholar 

  83. Marshe VS, Pira S, Mantere O, Bosche B, Looper KJ, Herrmann N, et al. C-reactive protein and cardiovascular risk in bipolar disorder patients: a systematic review. Prog Neuro-Psychopharmacol Biol Psychiatry. 2017;79:442–51. https://doi.org/10.1016/j.pnpbp.2017.07.026.

    Article  CAS  Google Scholar 

  84. Nielsen RE, Banner J, Jensen SE. Cardiovascular disease in patients with severe mental illness. Nat Rev Cardiol. 2021;18(2):136–45. https://doi.org/10.1038/s41569-020-00463-7.

    Article  PubMed  Google Scholar 

  85. Solmi M, Suresh Sharma M, Osimo EF, Fornaro M, Bortolato B, Croatto G, et al. Peripheral levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and interleukin-1β across the mood spectrum in bipolar disorder: a meta-analysis of mean differences and variability. Brain Behav Immun. 2021;97:193–203. https://doi.org/10.1016/j.bbi.2021.07.014.

    Article  CAS  PubMed  Google Scholar 

  86. Pitchot W, Scantamburlo G, Ansseau M, Souery D. Le trouble bipolaire: une affection bien complexe. Rev Méd Liège. 2012;67(5–6):366–73.

    CAS  PubMed  Google Scholar 

  87. Landgraf D, McCarthy MJ, Welsh DK. Circadian clock and stress interactions in the molecular biology of psychiatric disorders. Curr Psychiatry Rep. 2014;16(10):483. https://doi.org/10.1007/s11920-014-0483-7.

    Article  PubMed  Google Scholar 

  88. Sayana P, Colpo GD, Simões LR, Giridharan VV, Teixeira AL, Quevedo J, et al. A systematic review of evidence for the role of inflammatory biomarkers in bipolar patients. J Psychiatr Res. 2017;92:160–82. https://doi.org/10.1016/j.jpsychires.2017.03.018.

    Article  PubMed  Google Scholar 

  89. Morris G, Puri BK, Walker AJ, Maes M, Carvalho AF, Bortolasci CC, et al. Shared pathways for neuroprogression and somatoprogression in neuropsychiatric disorders. Neurosci Biobehav Rev. 2019;107:862–82. https://doi.org/10.1016/j.neubiorev.2019.09.025.

    Article  CAS  PubMed  Google Scholar 

  90. Munkholm K, Weikop P, Kessing LV, Vinberg M. Elevated levels of IL-6 and IL-18 in manic and hypomanic states in rapid cycling bipolar disorder patients. Brain Behav Immun. 2015;43:205–13. https://doi.org/10.1016/j.bbi.2014.09.021.

    Article  CAS  PubMed  Google Scholar 

  91. Dargél AA, Godin O, Kapczinski F, Kupfer DJ, Leboyer M. C-reactive protein alterations in bipolar disorder: a meta-analysis. J Clin Psychiatry. 2015;76(02):142–50. https://doi.org/10.4088/JCP.14r09007.

    Article  PubMed  Google Scholar 

  92. Fernandes BS, Steiner J, Molendijk ML, Dodd S, Nardin P, Gonçalves C-A, et al. C-reactive protein concentrations across the mood spectrum in bipolar disorder: a systematic review and meta-analysis. Lancet Psychiatry. 2016;3(12):1147–56. https://doi.org/10.1016/S2215-0366(16)30370-4.

    Article  PubMed  Google Scholar 

  93. Jacoby AS, Munkholm K, Vinberg M, Pedersen BK, Kessing LV. Cytokines, brain-derived neurotrophic factor and C-reactive protein in bipolar I disorder—results from a prospective study. J Affect Disord. 2016;197:167–74. https://doi.org/10.1016/j.jad.2016.03.040.

    Article  CAS  PubMed  Google Scholar 

  94. Cunha ÂB, Andreazza AC, Gomes FA, Frey BN, da Silveira LE, Gonçalves CA, et al. Investigation of serum high-sensitive C-reactive protein levels across all mood states in bipolar disorder. Eur Arch Psychiatry Clin Neurosci. 2008;258(5):300–4. https://doi.org/10.1007/s00406-007-0797-0.

    Article  PubMed  Google Scholar 

  95. Becking K, Boschloo L, Vogelzangs N, Haarman BCM, Riemersma-van der Lek R, Penninx BWJH, et al. The association between immune activation and manic symptoms in patients with a depressive disorder. Transl Psychiatry. 2013;3(10):e314. https://doi.org/10.1038/tp.2013.87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gorgulu Y, Uluturk MK, Palabiyik O. Comparison of serum BDNF, IL-1β, IL-6, TNF-α, CRP and leucocyte levels in unipolar mania and bipolar disorder. Acta Neuropsychiatr. 2021;33(6):317–22. https://doi.org/10.1017/neu.2021.25.

    Article  PubMed  Google Scholar 

  97. Chang HH, Wang T-Y, Lee IH, Lee S-Y, Chen KC, Huang S-Y, et al. C-reactive protein: a differential biomarker for major depressive disorder and bipolar II disorder. World J Biol Psychiatry. 2017;18(1):63–70. https://doi.org/10.3109/15622975.2016.1155746.

    Article  PubMed  Google Scholar 

  98. Wium-Andersen MK, Ørsted DD, Nordestgaard BG. Elevated C-reactive protein and late-onset bipolar disorder in 78 809 individuals from the general population. Br J Psychiatry. 2016;208(2):138–45. https://doi.org/10.1192/bjp.bp.114.150870.

    Article  PubMed  Google Scholar 

  99. Dickerson F, Stallings C, Origoni A, Boronow J, Yolken R. Elevated serum levels of C-reactive protein are associated with mania symptoms in outpatients with bipolar disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2007;31(4):952–5. https://doi.org/10.1016/j.pnpbp.2007.02.018.

    Article  CAS  Google Scholar 

  100. Lee S-Y, Chen S-L, Chang Y-H, Chen PS, Huang S-Y, Tzeng N-S, et al. Inflammation’s association with metabolic profiles before and after a twelve-week clinical trial in drug-Naïve patients with bipolar II disorder. PLoS One. 2013;8(6):e66847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hamdi G, Ammar HB, Khelifa E, Chaaben AB, Khouadja S, Ayari F, et al. High-sensitive c-reactive protein levels in euthymic bipolar patients: case-control study. Psychiatry Q. 2021;92(2):803–11. https://doi.org/10.1007/s11126-020-09854-y.

    Article  Google Scholar 

  102. Boukouaci W, Oliveira J, Etain B, Bennabi M, Mariaselvam C, Hamdani N, et al. Association between CRP genetic diversity and bipolar disorder comorbid complications. Int J Bipolar Disord. 2018;6(1):4. https://doi.org/10.1186/s40345-017-0109-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Evers A-K, Veeh J, McNeill R, Reif A, Kittel-Schneider S. C-reactive protein concentration in bipolar disorder: association with genetic variants. Int J Bipolar Disord. 2019;7(1):26. https://doi.org/10.1186/s40345-019-0162-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Misiak B, Stańczykiewicz B, Kotowicz K, Rybakowski JK, Samochowiec J, Frydecka D. Cytokines and C-reactive protein alterations with respect to cognitive impairment in schizophrenia and bipolar disorder: a systematic review. Schizophr Res. 2018;192:16–29. https://doi.org/10.1016/j.schres.2017.04.015.

    Article  PubMed  Google Scholar 

  105. Milton DC, Ward J, Ward E, Lyall DM, Strawbridge RJ, Smith DJ, et al. The association between C-reactive protein, mood disorder, and cognitive function in UK biobank. Eur Psychiatry. 2021;64(1):e14. https://doi.org/10.1192/j.eurpsy.2021.6.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Millett CE, Perez-Rodriguez M, Shanahan M, Larsen E, Yamamoto HS, Bukowski C, et al. C-reactive protein is associated with cognitive performance in a large cohort of euthymic patients with bipolar disorder. Mol Psychiatry. 2021;26(8):4096–105. https://doi.org/10.1038/s41380-019-0591-1.

    Article  CAS  PubMed  Google Scholar 

  107. Chiu C-T, Wang Z, Hunsberger JG, Chuang D-M. Therapeutic potential of mood stabilizers lithium and Valproic acid: beyond bipolar disorder. Sibley DR, curatore. Pharmacol Rev. 2013;65(1):105–42. https://doi.org/10.1124/pr.111.005512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Raison CL, Pikalov A, Siu C, Tsai J, Koblan K, Loebel A. C-reactive protein and response to lurasidone in patients with bipolar depression. Brain Behav Immun. 2018;73:717–24. https://doi.org/10.1016/j.bbi.2018.08.009.

    Article  CAS  PubMed  Google Scholar 

  109. Fiedorowicz JG, Cyranowski JM, Liu Z, Swartz HA. Changes in inflammation with treatment for bipolar II depression: pilot trial data on differential effects of psychotherapy and medication. Neurol Psychiatry Brain Res. 2019;33:112–8. https://doi.org/10.1016/j.npbr.2019.07.007.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Raison CL, Siu C, Pikalov A, Tocco M, Loebel A. C-reactive protein and response to lurasidone treatment in children and adolescents with bipolar I depression: results from a placebo-controlled trial. Brain Behav Immun. 2020;84:269–74. https://doi.org/10.1016/j.bbi.2019.12.010.

    Article  CAS  PubMed  Google Scholar 

  111. McIntyre RS, Subramaniapillai M, Lee Y, Pan Z, Carmona NE, Shekotikhina M, et al. Efficacy of adjunctive infliximab vs placebo in the treatment of adults with bipolar I/II depression: a randomized clinical trial. JAMA Psychiat. 2019;76(8):783. https://doi.org/10.1001/jamapsychiatry.2019.0779.

    Article  Google Scholar 

  112. Courtet P, Jaussent I, Genty C, Dupuy AM, Guillaume S, Ducasse D, et al. Increased CRP levels may be a trait marker of suicidal attempt. Eur Neuropsychopharmacol. 2015;25(10):1824–31. https://doi.org/10.1016/j.euroneuro.2015.05.003.

    Article  CAS  PubMed  Google Scholar 

  113. Chen X, Pu J, Liu Y, Tian L, Chen Y, Gui S, et al. Increased C-reactive protein concentrations were associated with suicidal behavior in patients with depressive disorders: a meta-analysis. Psychiatry Res. 2020;292:113320. https://doi.org/10.1016/j.psychres.2020.113320.

    Article  CAS  PubMed  Google Scholar 

  114. Batty GD, Bell S, Stamatakis E, Kivimäki M. Association of Systemic Inflammation with Risk of completed suicide in the general population. JAMA Psychiat. 2016;73(9):993. https://doi.org/10.1001/jamapsychiatry.2016.1805.

    Article  Google Scholar 

  115. Park RJ, Kim YH. Association between high sensitivity CRP and suicidal ideation in the Korean general population. Eur Neuropsychopharmacol. 2017;27(9):885–91. https://doi.org/10.1016/j.euroneuro.2017.06.010.

    Article  CAS  PubMed  Google Scholar 

  116. Graham JE, Robles TF, Kiecolt-Glaser JK, Malarkey WB, Bissell MG, Glaser R. Hostility and pain are related to inflammation in older adults. Brain Behav Immun. 2006;20(4):389–400. https://doi.org/10.1016/j.bbi.2005.11.002.

    Article  CAS  PubMed  Google Scholar 

  117. Coccaro EF, Lee R, Coussons-Read M. Elevated plasma inflammatory markers in individuals with intermittent explosive disorder and correlation with aggression in humans. JAMA Psychiat. 2014;71(2):158. https://doi.org/10.1001/jamapsychiatry.2013.3297.

    Article  Google Scholar 

  118. Coccaro EF, Lee R, Coussons-Read M. Cerebrospinal fluid and plasma C-reactive protein and aggression in personality-disordered subjects: a pilot study. J Neural Transm. 2015;122(2):321–6. https://doi.org/10.1007/s00702-014-1263-6.

    Article  CAS  PubMed  Google Scholar 

  119. Suchankova P, Henningsson S, Baghaei F, Rosmond R, Holm G, Ekman A. Genetic variability within the innate immune system influences personality traits in women. Genes Brain Behav. 2009;8(2):212–7. https://doi.org/10.1111/j.1601-183X.2008.00461.x.

    Article  CAS  PubMed  Google Scholar 

  120. Suchankova P, Holm G, Träskman-Bendz L, Brundin L, Ekman A. The +1444C>T polymorphism in the CRP gene: a study on personality traits and suicidal behaviour. Psychiatr Genet. 2013;23(2):70–6. https://doi.org/10.1097/YPG.0b013e32835d71b6.

    Article  CAS  PubMed  Google Scholar 

  121. Jacomb I, Stanton C, Vasudevan R, Powell H, O’Donnell M, Lenroot R, et al. C-reactive protein: higher during acute psychotic episodes and related to cortical thickness in schizophrenia and healthy controls. Front Immunol. 2018;9:2230. https://doi.org/10.3389/fimmu.2018.02230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. van Os J, Kenis G, Rutten BPF. The environment and schizophrenia. Nature. 2010;468(7321):203–12. https://doi.org/10.1038/nature09563.

    Article  CAS  PubMed  Google Scholar 

  123. Castellani CA, Melka MG, Gui JL, O’Reilly RL, Singh SM. Integration of DNA sequence and DNA methylation changes in monozygotic twin pairs discordant for schizophrenia. Schizophr Res. 2015;169(1–3):433–40. https://doi.org/10.1016/j.schres.2015.09.021.

    Article  CAS  PubMed  Google Scholar 

  124. van de Leemput J, Hess JL, Glatt SJ, Tsuang MT. Genetics of schizophrenia. In: Advances in genetics. Amsterdam: Elsevier; 2016. https://doi.org/10.1016/bs.adgen.2016.08.001.

  125. Müller N. Immunology of schizophrenia. Neuroimmunomodulation. 2014;21(2–3):109–16. https://doi.org/10.1159/000356538.

    Article  CAS  PubMed  Google Scholar 

  126. Bora E. Peripheral inflammatory and neurotrophic biomarkers of cognitive impairment in schizophrenia: a meta-analysis. Psychol Med. 2019;49(12):1971–9. https://doi.org/10.1017/S0033291719001685.

    Article  PubMed  Google Scholar 

  127. Upthegrove R, Khandaker GM. Cytokines, oxidative stress and cellular markers of inflammation in schizophrenia. Curr Top Behav Neurosci. 2020;44:49–66. https://doi.org/10.1007/7854_2018_88.

    Article  CAS  PubMed  Google Scholar 

  128. Spivak B, Radwan M, Bartur P, Mester R, Weizman A. Antinuclear autoantibodies in chronic schizophrenia. Acta Psychiatr Scand. 1995;92(4):266–9. https://doi.org/10.1111/j.1600-0447.1995.tb09581.x.

    Article  CAS  PubMed  Google Scholar 

  129. Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E. Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry. 2008;63(8):801–8. https://doi.org/10.1016/j.biopsych.2007.09.024.

    Article  CAS  PubMed  Google Scholar 

  130. Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediat Inflamm. 2010;2010:1–10. https://doi.org/10.1155/2010/289645.

    Article  CAS  Google Scholar 

  131. Chen S-J, Chao Y-L, Chen C-Y, Chang C-M, Wu EC-H, Wu C-S, et al. Prevalence of autoimmune diseases in in-patients with schizophrenia: nationwide population-based study. Br J Psychiatry. 2012;200(5):374–80. https://doi.org/10.1192/bjp.bp.111.092098.

    Article  PubMed  Google Scholar 

  132. Benros ME, Pedersen MG, Rasmussen H, Eaton WW, Nordentoft M, Mortensen PB. A Nationwide study on the risk of autoimmune diseases in individuals with a personal or a family history of schizophrenia and related psychosis. Am J Psychiatry. 2014;171(2):218–26. https://doi.org/10.1176/appi.ajp.2013.13010086.

    Article  PubMed  Google Scholar 

  133. Juncal-Ruiz M, Riesco-Dávila L, de la Foz VO-G, Ramírez-Bonilla M, Martínez-García O, Irure-Ventura J, et al. The effect of excess weight on circulating inflammatory cytokines in drug-naïve first-episode psychosis individuals. J Neuroinflammation. 2018;15(1):63. https://doi.org/10.1186/s12974-018-1096-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zajkowska Z, Mondelli V. First-episode psychosis: an inflammatory state? Neuroimmunomodulation. 2014;21(2–3):102–8. https://doi.org/10.1159/000356536.

    Article  CAS  PubMed  Google Scholar 

  135. Perkins DO, Jeffries CD, Addington J, Bearden CE, Cadenhead KS, Cannon TD, et al. Towards a psychosis risk blood diagnostic for persons experiencing high-risk symptoms: preliminary results from the NAPLS project. Schizophr Bull. 2015;41(2):419–28. https://doi.org/10.1093/schbul/sbu099.

    Article  PubMed  Google Scholar 

  136. Metcalf SA, Jones PB, Nordstrom T, Timonen M, Mäki P, Miettunen J, et al. Serum C-reactive protein in adolescence and risk of schizophrenia in adulthood: a prospective birth cohort study. Brain Behav Immun. 2017;59:253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Reponen EJ, Dieset I, Tesli M, Mørch RH, Aas M, Vedal TSJ, et al. Atherogenic lipid ratios related to myeloperoxidase and C-reactive protein levels in psychotic disorders. Front Psych. 2020;11:672. https://doi.org/10.3389/fpsyt.2020.00672.

    Article  Google Scholar 

  138. Fawzi MH, Fawzi MM, Fawzi MM, Said NS. C-reactive protein serum level in drug-free male Egyptian patients with schizophrenia. Psychiatry Res. 2011;190(1):91–7. https://doi.org/10.1016/j.psychres.2011.05.010.

    Article  CAS  PubMed  Google Scholar 

  139. Liemburg EJ, Nolte IM, Klein HC, Knegtering H. Relation of inflammatory markers with symptoms of psychotic disorders: a large cohort study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;86:89–94. https://doi.org/10.1016/j.pnpbp.2018.04.006.

    Article  CAS  Google Scholar 

  140. BramP P, Abbasi A, Wong A, Vaez A, Nolte I, Franceschini N, et al. Investigating the causal relationship of C-reactive protein with 32 complex somatic and psychiatric outcomes: a large-scale cross-consortium Mendelian randomization study. PLoS Med. 2016;13(6):e1001976. https://doi.org/10.1371/journal.pmed.1001976.

    Article  CAS  Google Scholar 

  141. Micoulaud-Franchi J-A, Faugere M, Boyer L, Fond G, Richieri R, Faget C, et al. Elevated C-reactive protein is associated with sensory gating deficit in schizophrenia. Schizophr Res. 2015;165(1):94–6. https://doi.org/10.1016/j.schres.2015.03.018.

    Article  PubMed  Google Scholar 

  142. Bulzacka E, Boyer L, Schürhoff F, Godin O, Berna F, Brunel L, et al. Chronic peripheral inflammation is associated with cognitive impairment in schizophrenia: results from the multicentric FACE-SZ dataset. Schizophr Bull. 2016;42(5):1290–302. https://doi.org/10.1093/schbul/sbw029.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Chang JP-C, Mondelli V, Satyanarayanan SK, Chiang Y-J, Chen H-T, Su K-P, et al. Cortisol, inflammatory biomarkers and neurotrophins in children and adolescents with attention deficit hyperactivity disorder (ADHD) in Taiwan. Brain Behav Immun. 2020;88:105–13. https://doi.org/10.1016/j.bbi.2020.05.017.

    Article  CAS  PubMed  Google Scholar 

  144. Fathian F, Løberg E-M, Gjestad R, Steen VM, Kroken RA, Jørgensen HA, et al. Associations between C-reactive protein levels and cognition during the first 6 months after acute psychosis. Acta Neuropsychiatr. 2019;31(1):36–45. https://doi.org/10.1017/neu.2018.25.

    Article  PubMed  Google Scholar 

  145. Miller BJ, Pikalov A, Siu CO, Tocco M, Tsai J, Harvey PD, et al. Association of C-reactive protein and metabolic risk with cognitive effects of lurasidone in patients with schizophrenia. Compr Psychiatry. 2020;102:152195. https://doi.org/10.1016/j.comppsych.2020.152195.

    Article  PubMed  Google Scholar 

  146. Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY, Shen YC. Changes in serum Interleukin-2, −6, and −8 levels before and during treatment with Risperidone and haloperidol: relationship to outcome in schizophrenia. J Clin Psychiatry. 2004;65(7):940–7. https://doi.org/10.4088/jcp.v65n0710.

    Article  CAS  PubMed  Google Scholar 

  147. Tourjman V, Kouassi É, Koué M-È, Rocchetti M, Fortin-Fournier S, Fusar-Poli P, et al. Antipsychotics’ effects on blood levels of cytokines in schizophrenia: a meta-analysis. Schizophr Res. 2013;151(1–3):43–7. https://doi.org/10.1016/j.schres.2013.10.011.

    Article  PubMed  Google Scholar 

  148. Fond G, Resseguier N, Schürhoff F, Godin O, Andrianarisoa M, et al. The FACE-SZ (FondaMental academic centers of expertise for schizophrenia) group. Relationships between low-grade peripheral inflammation and psychotropic drugs in schizophrenia: results from the national FACE-SZ cohort. Eur Arch Psychiatry Clin Neurosci. 2018;268(6):541–53. https://doi.org/10.1007/s00406-017-0847-1.

    Article  CAS  PubMed  Google Scholar 

  149. Fond G, Godin O, Boyer L, Berna F, Andrianarisoa M, et al. The FACE-SZ (FondaMental academic centers of expertise for schizophrenia) group. Chronic low-grade peripheral inflammation is associated with ultra resistant schizophrenia. Results from the FACE-SZ cohort. Eur Arch Psychiatry Clin Neurosci. 2019;269(8):985–92. https://doi.org/10.1007/s00406-018-0908-0.

    Article  CAS  PubMed  Google Scholar 

  150. Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A Meta-Analysis. J Clin Psychiatry. 2012;73(04):414–9. https://doi.org/10.4088/JCP.10r06823.

    Article  CAS  PubMed  Google Scholar 

  151. Marini S, De Berardis D, Vellante F, Santacroce R, Orsolini L, Valchera A, et al. Celecoxib adjunctive treatment to antipsychotics in schizophrenia: a review of randomized clinical add-on trials. Mediat Inflamm. 2016;2016:1–8. https://doi.org/10.1155/2016/3476240.

    Article  CAS  Google Scholar 

  152. Çakici N, van Beveren NJM, Judge-Hundal G, Koola MM, Sommer IEC. An update on the efficacy of anti-inflammatory agents for patients with schizophrenia: a meta-analysis. Psychol Med. 2019;49(14):2307–19. https://doi.org/10.1017/S0033291719001995.

    Article  PubMed  PubMed Central  Google Scholar 

  153. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.

    Book  Google Scholar 

  154. Pitsavos C, Panagiotakos DB, Papageorgiou C, Tsetsekou E, Soldatos C, Stefanadis C. Anxiety in relation to inflammation and coagulation markers, among healthy adults: the ATTICA study. Atherosclerosis. 2006;185(2):320–6. https://doi.org/10.1016/j.atherosclerosis.2005.06.001.

    Article  CAS  PubMed  Google Scholar 

  155. Copeland WE, Shanahan L, Worthman C, Angold A, Costello EJ. Generalized anxiety and C-reactive protein levels: a prospective, longitudinal analysis. Psychol Med. 2012;42(12):2641–50. https://doi.org/10.1017/S0033291712000554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Vogelzangs N, Beekman ATF, de Jonge P, Penninx BWJH. Anxiety disorders and inflammation in a large adult cohort. Transl Psychiatry. 2013;3(4):e249. https://doi.org/10.1038/tp.2013.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wagner E-YN, Wagner JT, Glaus J, Vandeleur CL, Castelao E, Strippoli M-PF, et al. Evidence for chronic low-grade systemic inflammation in individuals with agoraphobia from a population-based prospective study. PLoS One. 2015;10(4):e0123757. https://doi.org/10.1371/journal.pone.0123757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. O’Donovan A, Hughes BM, Slavich GM, Lynch L, Cronin M-T, O’Farrelly C, et al. Clinical anxiety, cortisol and interleukin-6: evidence for specificity in emotion–biology relationships. Brain Behav Immun. 2010;24(7):1074–7. https://doi.org/10.1016/j.bbi.2010.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Costello H, Gould RL, Abrol E, Howard R. Systematic review and meta-analysis of the association between peripheral inflammatory cytokines and generalised anxiety disorder. BMJ Open. 2019;9(7):e027925. https://doi.org/10.1136/bmjopen-2018-027925.

    Article  PubMed  PubMed Central  Google Scholar 

  160. De Berardis D, Serroni N, Campanella D, Marini S, Rapini G, Valchera A, et al. Alexithymia, suicide ideation, C-reactive protein, and serum lipid levels among outpatients with generalized anxiety disorder. Arch Suicide Res. 2017;21(1):100–12. https://doi.org/10.1080/13811118.2015.1004485.

    Article  PubMed  Google Scholar 

  161. Khandaker GM, Zammit S, Lewis G, Jones PB. Association between serum C-reactive protein and DSM-IV generalized anxiety disorder in adolescence: findings from the ALSPAC cohort. Neurobiol Stress. 2016;4:55–61. https://doi.org/10.1016/j.bbi.2017.11.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Nayek S, Ghosh S. A comparative study of serum C-reactive protein in patients with generalised anxiety disorder and depression. J Med Res. 2018;4:123–31.

    Article  Google Scholar 

  163. Tang Z, Ye G, Chen X, Pan M, Fu J, Fu T, et al. Peripheral proinflammatory cytokines in Chinese patients with generalised anxiety disorder. J Affect Disord. 2018;225:593–8. https://doi.org/10.1016/j.jad.2017.08.082.

    Article  CAS  PubMed  Google Scholar 

  164. Korkeila J, Runsten S, Ollikainen S, Korkeila K. PW01-161—generalized anxiety disorder and immunity markers in a stratified population sample. Eur Psychiatry. 2010;25(S1):1–1.

    Google Scholar 

  165. Naudé PJW, Roest AM, Stein DJ, de Jonge P, Doornbos B. Anxiety disorders and CRP in a population cohort study with 54,326 participants: the life lines study. World J Biol Psychiatry. 2018;19(6):461–70. https://doi.org/10.1080/15622975.2018.1433325.

    Article  PubMed  Google Scholar 

  166. Friend SF, Nachnani R, Powell SB, Risbrough VB. C-reactive protein: marker of risk for post-traumatic stress disorder and its potential for a mechanistic role in trauma response and recovery. Eur J Neurosci. 2020;55(9-10):2297–310. https://doi.org/10.1111/ejn.15031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Afzali B, Lombardi G, Lechler RI, Lord GM. The role of T helper 17 (Th17) and regulatory T cells (Treg) in Human organ transplantation and autoimmune disease: role of Th17 and Tregs in Human disease. Clin Exp Immunol. 2007;148(1):32–46. https://doi.org/10.1111/j.1365-2249.2007.03356.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sommershof A, Aichinger H, Engler H, Adenauer H, Catani C, Boneberg E-M, et al. Substantial reduction of naïve and regulatory T cells following traumatic stress. Brain Behav Immun. 2009;23(8):1117–24. https://doi.org/10.1016/j.bbi.2009.07.003.

    Article  CAS  PubMed  Google Scholar 

  169. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol Psychiatry. 2016;21(5):642–9. https://doi.org/10.1038/mp.2015.67.

    Article  CAS  PubMed  Google Scholar 

  170. Fischer KF, Simon MS, Elsner J, Dobmeier J, Dorr J, Blei L, et al. Assessing the links between childhood trauma, C-reactive protein and response to antidepressant treatment in patients with affective disorders. Eur Arch Psychiatry Clin Neurosci. 2021;271(7):1331–41. https://doi.org/10.1007/s00406-021-01245-z.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Lacey RE, Kumari M, McMunn A. Parental separation in childhood and adult inflammation: the importance of material and psychosocial pathways. Psychoneuroendocrinology. 2013;38(11):2476–84. https://doi.org/10.1016/j.psyneuen.2013.05.007.

    Article  CAS  PubMed  Google Scholar 

  172. McDade TW, Hoke M, Borja JB, Adair LS, Kuzawa C. Do environments in infancy moderate the association between stress and inflammation in adulthood? Initial evidence from a birth cohort in the Philippines. Brain Behav Immun. 2013;31:23–30. https://doi.org/10.1016/j.bbi.2012.08.010.

    Article  PubMed  Google Scholar 

  173. Powers A, Dixon HD, Conneely K, Gluck R, Munoz A, Rochat C, et al. The differential effects of PTSD, MDD, and dissociation on CRP in trauma-exposed women. Compr Psychiatry. 2019;93:33–40. https://doi.org/10.1016/j.comppsych.2019.06.007.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Söndergaard HP, Hansson L-O, Theorell T. The inflammatory markers C-reactive protein and serum amyloid a in refugees with and without posttraumatic stress disorder. Clin Chim Acta. 2004;342(1–2):93–8. https://doi.org/10.1016/j.cccn.2003.12.019.

    Article  CAS  PubMed  Google Scholar 

  175. McCanlies EC, Araia SK, Joseph PN, Mnatsakanova A, Andrew ME, Burchfiel CM, et al. C-reactive protein, Interleukin-6, and posttraumatic stress disorder symptomology in urban police officers. Cytokine. 2011;55(1):74–8. https://doi.org/10.1016/j.cyto.2011.03.025.

    Article  CAS  PubMed  Google Scholar 

  176. Heath NM, Chesney SA, Gerhart JI, Goldsmith RE, Luborsky JL, Stevens NR, et al. Interpersonal violence, PTSD, and inflammation: potential psychogenic pathways to higher C-reactive protein levels. Cytokine. 2013;63(2):172–8. https://doi.org/10.1016/j.cyto.2013.04.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Eraly SA, Nievergelt CM, Maihofer AX, Barkauskas DA, Biswas N, Agorastos A, et al. Assessment of plasma C-reactive protein as a biomarker of posttraumatic stress disorder risk. JAMA Psychiat. 2014;71(4):423. https://doi.org/10.1001/jamapsychiatry.2013.4374.

    Article  CAS  Google Scholar 

  178. Passos IC, Vasconcelos-Moreno MP, Costa LG, Kunz M, Brietzke E, Quevedo J, et al. Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. Lancet Psychiatry. 2015;2(11):1002–12.

    Article  PubMed  Google Scholar 

  179. Rosen RL, Levy-Carrick N, Reibman J, Xu N, Shao Y, Liu M, et al. Elevated C-reactive protein and posttraumatic stress pathology among survivors of the 9/11 world trade center attacks. J Psychiatr Res. 2017;89:14–21.

    Article  PubMed  Google Scholar 

  180. Yang J-J, Jiang W. Immune biomarkers alterations in post-traumatic stress disorder: a systematic review and meta-analysis. J Affect Disord. 2020;268:39–46. https://doi.org/10.1016/j.jad.2020.02.044.

    Article  CAS  PubMed  Google Scholar 

  181. Miller RJ, Sutherland AG, Hutchison JD, Alexander DA. C-reactive protein and interleukin6 receptor in post-traumatic stress disorder: a pilot study. Cytokine. 2001;13(4):253–5. https://doi.org/10.1006/cyto.2000.0825.

    Article  CAS  PubMed  Google Scholar 

  182. Sumner JA, Chen Q, Roberts AL, Winning A, Rimm EB, Gilsanz P, et al. Posttraumatic stress disorder onset and inflammatory and endothelial function biomarkers in women. Brain Behav Immun. 2018;69:203–9. https://doi.org/10.1016/j.bbi.2017.11.013.

    Article  CAS  PubMed  Google Scholar 

  183. Wolf EJ, Logue MW, Zhao X, Daskalakis NP, Morrison FG, Escarfulleri S, et al. PTSD and the klotho longevity gene: evaluation of longitudinal effects on inflammation via DNA methylation. Psychoneuroendocrinology. 2020;117:104656. https://doi.org/10.1016/j.psyneuen.2020.104656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Michopoulos V, Rothbaum AO, Jovanovic T, Almli LM, Bradley B, Rothbaum BO, et al. Association of CRP genetic variation and CRP level with elevated PTSD symptoms and physiological responses in a civilian population with high levels of trauma. Am J Psychiatry. 2015;172(4):353–62. https://doi.org/10.1176/appi.ajp.2014.14020263.

    Article  PubMed  Google Scholar 

  185. Miller MW, Maniates H, Wolf EJ, Logue MW, Schichman SA, Stone A, et al. CRP polymorphisms and DNA methylation of the AIM2 gene influence associations between trauma exposure, PTSD, and C-reactive protein. Brain Behav Immun. 2018;67:194–202.

    Article  CAS  PubMed  Google Scholar 

  186. Swedo SE, Leonard HL, Garvey M, Mittleman B, Allen AJ, Perlmutter S, et al. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: clinical description of the first 50 cases. Am J Psychiatry. 1998;155(2):264–71.

    Article  CAS  PubMed  Google Scholar 

  187. Danışman Sonkurt M, Altınöz AE, Köşger F, Yiğitaslan S, Güleç G, Eşsizoğlu A. Are there differences in oxidative stress and inflammatory processes between the autogenous and reactive subtypes of obsessive-compulsive disorder? A controlled cross-sectional study. Braz J Psychiatry. 2021;44:S1516. https://doi.org/10.1590/1516-4446-2021-1740.

    Article  Google Scholar 

  188. Mataix-Cols D, Frans E, Pérez-Vigil A, Kuja-Halkola R, Gromark C, Isomura K, et al. A total-population multigenerational family clustering study of autoimmune diseases in obsessive-compulsive disorder and Tourette’s/chronic tic disorders. Mol Psychiatry. 2018;23(7):1652–8.

    Article  CAS  PubMed  Google Scholar 

  189. Gerentes M, Pelissolo A, Rajagopal K, Tamouza R, Hamdani N. Obsessive-compulsive disorder: autoimmunity and Neuroinflammation. Curr Psychiatry Rep. 2019;21(8):78. https://doi.org/10.1007/s11920-019-1062-8.

    Article  PubMed  Google Scholar 

  190. Cosco TD, Pillinger T, Emam H, Solmi M, Budhdeo S, Matthew Prina A, et al. Immune aberrations in obsessive-compulsive disorder: a systematic review and meta-analysis. Mol Neurobiol. 2019;56(7):4751–9. https://doi.org/10.1007/s12035-018-1409-x.

    Article  CAS  PubMed  Google Scholar 

  191. Ekinci A, Ekinci O. The relationships between low grade inflammation, demographic and clinical characteristics in patients with obsessive compulsive disorder. Anadolu Psikiyatr Derg. 2017;18(5):438. https://doi.org/10.5455/apd.256532.

    Article  Google Scholar 

  192. Anney RJL, Lasky-Su J, Ó’Dúshláine C, Kenny E, Neale BM, Mulligan A, et al. Conduct disorder and ADHD: evaluation of conduct problems as a categorical and quantitative trait in the international multicentre ADHD genetics study. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(8):1369–78. https://doi.org/10.1002/ajmg.b.30871.

    Article  CAS  PubMed  Google Scholar 

  193. Namjoo I, Alavi Naeini A, Najafi M, Aghaye Ghazvini MR, Hasanzadeh A. The relationship between antioxidants and inflammation in children with attention deficit hyperactivity disorder. Basic Clin Neurosci J. 2020;11:313–22. https://doi.org/10.32598/bcn.11.2.1489.1.

    Article  CAS  Google Scholar 

  194. Banerjee TD, Middleton F, Faraone SV. Environmental risk factors for attention-deficit hyperactivity disorder. Acta Paediatr. 2007;96(9):1269–74.

    Article  PubMed  Google Scholar 

  195. Joseph N, Zhang-James Y, Perl A, Faraone SV. Oxidative stress and ADHD: a meta-analysis. J Atten Disord. 2015;19(11):915–24. https://doi.org/10.1177/1087054713510354.

    Article  PubMed  Google Scholar 

  196. Donfrancesco R, Nativio P, Borrelli E, Giua E, Andriola E, Villa MP, et al. Serum cytokines in pediatric neuropsychiatric syndromes: focus on attention deficit hyperactivity disorder. Minerva Pediatr. 2021;73(5):398–404.

    Article  Google Scholar 

  197. Anand D, Colpo GD, Zeni G, Zeni CP, Teixeira AL. Attention-deficit/hyperactivity disorder and inflammation: what does current knowledge tell us? A systematic review. Front Psychiatry. 2017;8:228. https://doi.org/10.3389/fpsyt.2017.00228.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Cortese S, Angriman M, Comencini E, Vincenzi B, Maffeis C. Association between inflammatory cytokines and ADHD symptoms in children and adolescents with obesity: a pilot study. Psychiatry Res. 2019;278:7–11. https://doi.org/10.1016/j.psychres.2019.05.030.

    Article  CAS  PubMed  Google Scholar 

  199. Darwish AH, Elgohary TM, Nosair NA. Serum Interleukin-6 level in children with attention-deficit hyperactivity disorder (ADHD). J Child Neurol. 2019;34(2):61–7. https://doi.org/10.1177/0883073818809831.

    Article  PubMed  Google Scholar 

  200. Dunn GA, Nigg JT, Sullivan EL. Neuroinflammation as a risk factor for attention deficit hyperactivity disorder. Pharmacol Biochem Behav. 2019;182:22–34. https://doi.org/10.1016/j.pbb.2019.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Yang LL, Stiernborg M, Skott E, Söderström Å, Giacobini M, Lavebratt C. Proinflammatory mediators and their associations with medication and comorbid traits in children and adults with ADHD. Eur Neuropsychopharmacol. 2020;41:118–31. https://doi.org/10.1016/j.euroneuro.2020.10.005.

    Article  CAS  PubMed  Google Scholar 

  202. Hariri M, Djazayery A, Djalali M, Saedisomeolia A, Rahimi A, Abdolahian E. Effect of n-3 supplementation on hyperactivity, oxidative stress and inflammatory mediators in children with attention-deficit-hyperactivity disorder. Malays J Nutr. 2012;18(3):329–35.

    CAS  PubMed  Google Scholar 

  203. Antshel KM, Zhang-James Y, Wagner KE, Ledesma A, Faraone SV. An update on the comorbidity of ADHD and ASD: a focus on clinical management. Expert Rev Neurother. 2016;16(3):279–93. https://doi.org/10.1586/14737175.2016.1146591.

    Article  CAS  PubMed  Google Scholar 

  204. Yin F, Wang H, Liu Z, Gao J. Association between peripheral blood levels of C-reactive protein and autism Spectrum disorder in children: a systematic review and meta-analysis. Brain Behav Immun. 2020;88:432–41. https://doi.org/10.1016/j.bbi.2020.04.008.

    Article  CAS  PubMed  Google Scholar 

  205. Reece AS. High-sensitivity CRP in opiate addiction: relative and age-dependent elevations. Cardiovasc Toxicol. 2012;12(2):149–57. https://doi.org/10.1007/s12012-012-9154-2.

    Article  CAS  PubMed  Google Scholar 

  206. Lu RB, Wang TY, Lee SY, Chen SL, Chang YH, See Chen P, et al. Correlation between interleukin-6 levels and methadone maintenance therapy outcomes. Drug Alcohol Depend. 2019;204:107516. https://doi.org/10.1016/j.drugalcdep.2019.06.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ribeiro CB, de Oliveira Feitosa de Castro F, Dorneles GP, de Sousa Barros JB, Silva JM, Tavares C, et al. The concomitant use of cannabis and cocaine coexists with increased LPS levels and systemic inflammation in male drug users. Cytokine. 2021;141:155472. https://doi.org/10.1016/j.cyto.2021.155472.

    Article  CAS  PubMed  Google Scholar 

  208. Alho H. Alcohol misuse increases serum antibodies to oxidized ldl and c-reactive protein. Alcohol Alcohol. 2004;39(4):312–5. https://doi.org/10.1093/alcalc/agh059.

    Article  CAS  PubMed  Google Scholar 

  209. García-Calvo X, Bolao F, Sanvisens A, Zuluaga P, Tor J, Muga R, et al. Significance of markers of monocyte activation (CD163 and sCD14) and inflammation (IL-6) in patients admitted for alcohol use disorder treatment. Alcohol Clin Exp Res. 2020;44(1):152–8. https://doi.org/10.1111/acer.14228.

    Article  CAS  PubMed  Google Scholar 

  210. Xu YY, Ge JF, Chen J, Liang J, Pang LJ, Gao WF, et al. Evidence of a relationship between plasma Leptin, not Nesfatin-1, and craving in male alcohol-dependent patients after abstinence. Front Endocrinol. 2020;11:159. https://doi.org/10.3389/fendo.2020.00159.

    Article  Google Scholar 

  211. van de Loo AJAE, Mackus M, Kwon O, Krishnakumar IM, Garssen J, Kraneveld AD, et al. The inflammatory response to alcohol consumption and its role in the pathology of alcohol hangover. J Clin Med. 2020;9(7):2081. https://doi.org/10.3390/jcm9072081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kim DJ, Kim W, Yoon SJ, Choi BM, Kim JS, Go HJ, et al. Effects of alcohol hangover on cytokine production in healthy subjects. Alcohol. 2003;31(3):167–70. https://doi.org/10.1016/j.alcohol.2003.09.003.

    Article  CAS  PubMed  Google Scholar 

  213. Wiese J, McPherson S, Odden MC, Shlipak MG. Effect of Opuntia ficus indica on symptoms of the alcohol hangover. Arch Intern Med. 2004;164(12):1334. https://doi.org/10.1001/archinte.164.12.1334.

    Article  PubMed  Google Scholar 

  214. Mammen RR, Natinga Mulakal J, Mohanan R, Maliakel B, Illathu MK. Clove bud polyphenols alleviate alterations in inflammation and oxidative stress markers associated with binge drinking: a randomized double-blinded placebo-controlled crossover study. J Med Food. 2018;21(11):1188–96. https://doi.org/10.1089/jmf.2017.4177.

    Article  CAS  PubMed  Google Scholar 

  215. Rajavashisth TB, Shaheen M, Norris KC, Pan D, Sinha SK, Ortega J, et al. Decreased prevalence of diabetes in marijuana users: cross-sectional data from the National Health and nutrition examination survey (NHANES) III. BMJ Open. 2012;2(1):e000494. https://doi.org/10.1136/bmjopen-2011-000494.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Costello EJ, Copeland WE, Shanahan L, Worthman CM, Angold A. C-reactive protein and substance use disorders in adolescence and early adulthood: a prospective analysis. Drug Alcohol Depend. 2013;133(2):712–7. https://doi.org/10.1016/j.drugalcdep.2013.08.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Alshaarawy O, Anthony JC. Cannabis smoking and serum C-reactive protein: a quantile regressions approach based on NHANES 2005–2010. Drug Alcohol Depend. 2015;147:203–7. https://doi.org/10.1016/j.drugalcdep.2014.11.017.

    Article  CAS  PubMed  Google Scholar 

  218. Ferguson EG, Mannes ZL, Ennis N. Is marijuana use associated with lower inflammation? Results from waves III and IV of the national longitudinal study of adolescent to adult health. Drug Alcohol Depend. 2019;198:162–7. https://doi.org/10.1016/j.drugalcdep.2019.01.021.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Lisano JK, Kisiolek JN, Smoak P, Phillips KT, Stewart LK. Chronic cannabis use and circulating biomarkers of neural health, stress, and inflammation in physically active individuals. Appl Physiol Nutr Metab. 2020;45(3):258–63. https://doi.org/10.1139/apnm-2019-0300.

    Article  CAS  PubMed  Google Scholar 

  220. Ghazavi A, Mosayebi G, Solhi H, Rafiei M, Moazzeni SM. Serum markers of inflammation and oxidative stress in chronic opium (Taryak) smokers. Immunol Lett. 2013;153(1–2):22–6. https://doi.org/10.1016/j.imlet.2013.07.001.

    Article  CAS  PubMed  Google Scholar 

  221. Mirzaeipour F, Azdaki N, Mohammadi GA, Addasi E. The effects of opium addiction through different administration routes on inflammatory and coagulation factors. J Kerman Univ Med Sci. 2013;20(3):292–300.

    Google Scholar 

  222. Azdaki N, Zardast M, Anani-Sarab G, Abdorrazaghnaejad H, Ghasemian MR, Saburi A. Comparison between Homocysteine, fibrinogen, PT, PTT, INR and CRP in male smokers with/without addiction to opium. Addict Health. 2017;9(1):17–23.

    PubMed  PubMed Central  Google Scholar 

  223. Perrot S, Guilbaud G, Kayser V. Effects of intraplantar morphine on paw edema and pain-related behaviour in a rat model of repeated acute inflammation. Pain. 1999;83(2):249–57. https://doi.org/10.1016/s0304-3959(99)00110-4.

    Article  CAS  PubMed  Google Scholar 

  224. Glattard E, Welters ID, Lavaux T, Muller AH, Laux A, Zhang D, et al. Endogenous morphine levels are increased in sepsis: a partial implication of neutrophils. PLoS One. 2010;5(1):e8791. https://doi.org/10.1371/journal.pone.0008791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. van Loon JP, de Grauw JC, van Dierendonck M, L'ami JJ, Back W, van Werren PR. Intra-articular opioid analgesia is effective in reducing pain and inflammation in an equine LPS induced synovitis model: analgesic and anti-inflammatory effects of intra-articular opioids in equine synovitis. Equine Vet J. 2010;42(5):412–9. https://doi.org/10.1111/j.2042-3306.2010.00077.x.

    Article  PubMed  Google Scholar 

  226. Alexander SA, Mathew Thomas V, Savage JA. Elevated C-reactive protein and role of steroids in cocaine-associated levamisole-induced vasculitis. Cureus. 2020;12(4):e7597. https://doi.org/10.7759/cureus.7597.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Guo Q, Zheng Y, Shi J, Wang J, Li G, Li C, et al. Immediate psychological distress in quarantined patients with COVID-19 and its association with peripheral inflammation: a mixed-method study. Brain Behav Immun. 2020;88:17–27. https://doi.org/10.1016/j.bbi.2020.05.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Najjar S, Najjar A, Chong DJ, Pramanik BK, Kirsch C, Kuzniecky RI, et al. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J Neuroinflammation. 2020;17(1):231. https://doi.org/10.1186/s12974-020-01896-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Troyer EA, Kohn JN, Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav Immun. 2020;87:34–9. https://doi.org/10.1016/j.bbi.2020.04.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Lorkiewicz P, Waszkiewicz N. Biomarkers of post-COVID depression. J Clin Med. 2021;10(18):4142. https://doi.org/10.3390/jcm10184142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Bhargava A, Fukushima EA, Levine M, Zhao W, Tanveer F, Szpunar SM, et al. Predictors for severe COVID-19 infection. Clin Infect Dis. 2020;71(8):1962–8. https://doi.org/10.1093/cid/ciaa674.

    Article  CAS  PubMed  Google Scholar 

  232. Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. J Med Virol. 2020;92(10):1733–4. https://doi.org/10.1002/jmv.25819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Liu Q, Dai Y, Feng M, Wang X, Liang W, Yang F. Associations between serum amyloid a, interleukin-6, and COVID-19: a cross-sectional study. J Clin Lab Anal. 2020;34(10):e23527. https://doi.org/10.1002/jcla.23527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Yuan B, Li W, Liu H, Cai X, Song S, Zhao J, et al. Correlation between immune response and self-reported depression during convalescence from COVID-19. Brain Behav Immun. 2020;88:39–43. https://doi.org/10.1016/j.bbi.2020.05.062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Mazza MG, Palladini M, De Lorenzo R, Magnaghi C, Poletti S, Furlan R, et al. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun. 2021;94:138–47. https://doi.org/10.1016/j.bbi.2021.02.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Forget M-F, Del Degan S, Leblanc J, Tannous R, Desjardins M, Durand M, et al. Delirium and inflammation in older adults hospitalized for COVID-19: a cohort study. Clin Interv Aging. 2021;16:1223–30. https://doi.org/10.2147/CIA.S315405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Zheng F, Xie W. High-sensitivity C-reactive protein and cognitive decline: the English longitudinal study of ageing. Psychol Med. 2018;48(8):1381–9. https://doi.org/10.1017/S0033291717003130.

    Article  PubMed  Google Scholar 

  238. Vintimilla R, Hall J, Johnson L, O’Bryant S. The relationship of CRP and cognition in cognitively normal older Mexican Americans: a cross-sectional study of the HABLE cohort. Medicine (Baltimore). 2019;98(19):e15605. https://doi.org/10.1097/MD.0000000000015605.

    Article  PubMed  Google Scholar 

  239. Mitko A, Rothlein D, Poole V, Robinson M, McGlinchey R, DeGutis J, et al. Individual differences in sustained attention are associated with cortical thickness. Hum Brain Mapp. 2019;40(11):3243–53. https://doi.org/10.1002/hbm.24594.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Orsolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orsolini, L., Pompili, S., Volpe, U. (2023). C-Reactive Protein (CRP): A Potent Inflammation Biomarker in Psychiatric Disorders. In: Kim, YK. (eds) Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders. Advances in Experimental Medicine and Biology, vol 1411. Springer, Singapore. https://doi.org/10.1007/978-981-19-7376-5_7

Download citation

Publish with us

Policies and ethics