Skip to main content

Sensitivity Data Driven Composite Floor Structural Optimization for Tall Office Buildings

  • Conference paper
  • First Online:
Proceedings of The 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2022

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 302))

  • 1394 Accesses

Abstract

In tall office buildings, steel beam composite floor system is a popular solution for floor systems as it is known for requiring less construction time and having good weight-to-strength ratio. However, despite being a relatively light-weight floor system, steel beams in composite floor systems are still accountable for a large percentage of buildings’ self-weight. Therefore, optimization of this floor system design is still required, especially for tall buildings, and it can be achieved by reducing the weight of steel beam supporting the composite deck. In this paper, optimization methods, Multiple Decomposition Method and Sensitivity Data Driven Algorithm, are employed to design and optimize a large span steel beams supporting deck floor of a tall office building. Based on Multiple Decomposition Method, the composite floor’s beams are divided into three substructure levels. To global structural performance, the 1st level which consists of the entire composite deck floor aims to achieve floor the serviceability performance. Subsequently, the 2nd level involves serviceability requirement of composite beams within the floor. Lastly, the 3rd level consists of structural elements such as the composite deck, steel beams, and shear studs, and the optimization problem is related to sizing the cross-section dimensions of each beam to meet the design requirements from both the 2nd level and 3rd level. In addition, Sensitivity Data Driven Algorithm is also used to further determine design constraint sensitivity coefficients to design variables as guidance to examine optimum beam sizing proportion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelman, et al.: Structural sensivity analysis: methods, applications and needs. Recent Experiences in Multidisciplinary Analysis and Optimization, Part 1 (1984)

    Google Scholar 

  • ANSI/AISC 360-16: Specification for structural steel buildings. American Institute of Steel Construction, Chicago, Illinois (2016)

    Google Scholar 

  • ASCE/SEI 7-16: Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers. Reston, Virginia (2017)

    Google Scholar 

  • Building code requirement for structural concrete (ACI 318-19) and commentary, ACU 318R-19. American Concrete Institute, Farmington Hills, MI (2019)

    Google Scholar 

  • Krish, U.: Two-level optimization of prestressed structures. Eng. Struct. 19(04), 309–317 (1997)

    Article  Google Scholar 

  • Krish, U.: Reanalysis and sensitivity reanalysis by combined approximations. Struct. Multidisc. Optm. 40(03), 01–15 (2009)

    MathSciNet  Google Scholar 

  • Krish, U.: Reanalysis and sensitivity reanalysis by combined approximations. Struct. Multidisc. Optm. 40(1-6), 01–15 (2010)

    Article  MathSciNet  Google Scholar 

  • Li, et al.: Multiobjective and multilevel optimization for steel frames. Eng. Struct. 21(06), 519–529 (1999)

    Article  Google Scholar 

  • Sobieszczanski-Sobieski, et al.: Structural optimization by multilevel decomposition. AIAA J. 23(11), 1775–1782 (1985)

    Google Scholar 

  • Sobieszczanski-Sobieski, et al.: Structural sizing by generalized, multilevel optimization. AIAA J. 25(01), 139–145 (1987)

    Google Scholar 

  • Yates, K., Gürdal, S., Thangjitham, S.: Multilevel optimization of space trusses using continuum modelling. Struct. Optim. 7(03), 176–183 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhao .

Editor information

Editors and Affiliations

Appendix A

Appendix A

This appendix provides necessary detailed formulations for composite steel beam analysis.

Limiting width-thickness ratios for flanges of doubly I-shaped built-up sections

$$ {\text{Compact web}}:({\text{H}} - {\text{2T}}_{{\text{f}}} )/{\text{T}}_{{\text{w}}} \le \lambda_{p} = 3.76\sqrt {\frac{{E_{s} }}{{F_{y} }}} $$
(AISC Table B4.1b)
$$ {\text{Compact flange}}:(0.5{\text{B)}}/{\text{T}}_{{\text{f}}} \le \lambda_{p} = 0.38\sqrt {\frac{{E_{s} }}{{F_{y} }}} $$
(AISC Table B4.1b)

Notice: In this study case, Tf chosen for design is 10% larger than Tf required by AISC specifications.

Steel beam section properties

$$ {\text{A}}_{{\text{s}}} = {\text{BT}}_{{\text{f}}} + ({\text{H}} - 2{\text{T}}_{{\text{f}}} ){\text{T}}_{{\text{w}}} $$
$$ {\text{I}}_{{{\text{s}}.{\text{x}}}} = (1/12)({\text{BH}}^{3} ) - (1/12)({\text{B}} - {\text{T}}_{{\text{w}}} ).({\text{H}} - 2\,{\text{T}}_{{\text{f}}} )^{3} $$
$$ {\text{Z}}_{{\text{x}}} = (1/4){\text{BH}}^{2} $$

Transformed concrete section properties

\({\text{B}}_{{{\text{eff}}}} = \min\) (min beam spacing. 2 the smallest distance to the nearest slab edge, L/4) (AISC Sec I3.1a)

$$ {\text{B}}_{{{\text{eff.Tr}}}} = \upalpha {\text{B}}_{{{\text{eff}}}} $$
$$ \upalpha = {\text{E}}_{{\text{c}}} /{\text{E}}_{{\text{s}}} $$
$$ {\text{A}}_{{{\text{c.tr}}}} = {\text{B}}_{{{\text{eff.tr}}}} \,{\text{H}}_{{{\text{con}}}} $$
$$ I_{{{\text{c.tr.x}}}} = \, (1/12){\text{B}}_{{{\text{eff.tr}}}} \,{\text{H}}_{{{\text{con}}}}^{3} $$

Full composite beam section properties

$$ \overline{{\text{Y}}} = {\text{(A}}_{{{\text{c.tr}}}} ({\text{H}}_{{{\text{con}}}} /2) + {\text{A}}_{{\text{s}}} .({\text{H}}_{{{\text{deck.total}}}} + {\text{H}}/2))/({\text{B}}_{{{\text{eff.tr}}}} {\text{H}}_{{{\text{con}}}} + {\text{A}}_{{\text{s}}} ) $$
$$ {\text{I}}_{{{\text{full.com.x}}}} = {\text{I}}_{{{\text{sx}}}} + {\text{A}}_{{\text{s}}} (({\text{H}}_{{{\text{deck.total}}}} + 0.5\,{\text{H}}) - \overline{{\text{Y}}} )^{2} + {\text{I}}_{{{\text{c.tr.x}}}} + {\text{A}}_{{{\text{c.tr}}}} .((0.5\,{\text{H}}_{con} ) - \overline{{\text{Y}}} {)}^{{2}} $$

Total deflection after composite action

\({\text{I}}_{{{\text{eff.x}}}} = {\text{I}}_{{{\text{full.com.x}}}}\) (100% composite action and shoring during construction)

$$ \Delta_{{{\text{max.mid}}}} = \frac{5}{48}\frac{{({\text{M}}_{{{\text{dead}}}} + {\text{M}}_{{\text{super-dead}}} + {\text{M}}_{{{\text{liveload}}}} ){\text{L}}^{2} }}{{{\text{E}}\,{\text{I}}_{{{\text{eff.x}}}} }} $$
$$ \Delta_{{{\text{allowable}}}} = \frac{{\text{L}}}{240} $$

Design composite plastic moment capacity for positive bending

Assuming shear studs provide 100% composite action.

$$ {\text{C}} = \min ({\text{A}}_{{\text{s}}} {\text{F}}_{{\text{y}}} ,0.85\,{\text{f}}_{{\text{c}}}^{\prime } \,{\text{H}}_{{{\text{con}}}} \,{\text{B}}_{{{\text{eff}}}} ) $$
(AISC C-I3-6, C-I3-7)
$$ {\text{a}} = \frac{{\text{C}}}{{0.85\,{\text{f}}_{{\text{c}}}^{\prime } \,{\text{B}}_{{{\text{eff}}}} }} $$
(AISC C-I3-6, C-I3-9)
$$ {\text{M}}_{{\text{n}}} = {\text{C}}\left( {\frac{{\text{H}}}{2} + {\text{H}}_{{{\text{deck.total}}}} - \frac{{\text{a}}}{2}} \right) $$
(AISC C-I3-10)
$$\upphi {\text{M}}_{{\text{n}}} =\upphi _{{{\text{bcpp}}}} {\text{M}}_{{\text{n}}} = 0.9\,{\text{M}}_{{\text{n}}} $$
(AISC Sec. I3.2)

Design shear strength in the major direction

For I-shaped section,

$$\upphi _{{\text{v}}} {\text{V}}_{{\text{n}}} =\upphi _{{\text{v}}} 0.6{\text{A}}_{{\text{w}}} {\text{F}}_{{\text{y}}} {\text{C}}_{{{\text{v}}1}} $$
(AISC G2-1)
$$ \begin{aligned}{\upphi }_{{\text{v}}} & = 1.0\quad {\text{if}}({\text{H}} - 2{\text{T}}_{{\text{f}}} )/{\text{t}}_{{\text{w}}} \le 2.24\sqrt {\frac{{{\text{E}}_{{\text{s}}} }}{{{\text{F}}_{{\text{y}}} }}} \\ & \quad 0.9\quad {\text{if}}({\text{H}} - 2{\text{T}}_{{\text{f}}} )/{\text{t}}_{{\text{w}}} > 2.24\sqrt {\frac{{{\text{E}}_{{\text{s}}} }}{{{\text{F}}_{{\text{y}}} }}} \\ \end{aligned} $$
(AISC G2-1a)
$$ \begin{aligned} {\text{C}}_{{{\text{v}}1}} & = 1.0\quad {\text{if}}({\text{H}} - 2{\text{T}}_{{\text{f}}} )/{\text{t}}_{{\text{w}}} \le 1.10\sqrt {\frac{{5.34\,{\text{E}}_{{\text{s}}} }}{{{\text{F}}_{{\text{y}}} }}} \\ & \quad \frac{{1.1\sqrt {5.34\,{\text{E}}_{{\text{s}}} /{\text{F}}_{{\text{y}}} } }}{{({\text{H}} - 2{\text{T}}_{{\text{f}}} )/{\text{t}}_{{\text{w}}} }}\quad {\text{if}}({\text{H}} - 2{\text{T}}_{{\text{f}}} )/{\text{t}}_{{\text{w}}} > 2.24\sqrt {\frac{{5.34\,{\text{E}}_{{\text{s}}} }}{{{\text{F}}_{{\text{y}}} }}} \\ \end{aligned} $$
(AISC G2-3, G2-4)
$$ {\text{A}}_{{\text{w}}} = {\text{HT}}_{{\text{w}}} $$
(AISC G2-1)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chornay, M., Zhao, X. (2023). Sensitivity Data Driven Composite Floor Structural Optimization for Tall Office Buildings. In: Geng, G., Qian, X., Poh, L.H., Pang, S.D. (eds) Proceedings of The 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2022. Lecture Notes in Civil Engineering, vol 302. Springer, Singapore. https://doi.org/10.1007/978-981-19-7331-4_75

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7331-4_75

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7330-7

  • Online ISBN: 978-981-19-7331-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics