Skip to main content

Antistatic Packaging for Electronic Devices of PTT-Based Polymer Blends, Composites, and Nanocomposites

  • Chapter
  • First Online:
Poly Trimethylene Terephthalate

Abstract

Due to the economic growth and the consumption of goods and services, the packaging sector presents a very favorable scenario. In the electronic components’ industry, packages must dissipate electrostatic discharges during the transport and storage of these components to ensure functionality. This special type of packaging is called antistatic packaging and is a very important sector since the electrostatic discharge of electronic products can damage and/or disable electronic devices. However, for this application, the material must have low electrical resistivity, which makes it necessary to add antistatic agents to achieve these properties. In this chapter, we will discuss the use of poly(trimethylene terephthalate) (PTT)-based polymeric blends, composites, and nanocomposites as antistatic packaging for electronic devices. As antistatic agents, carbon materials were chosen, and the use of three different antistatic agents such as carbon nanotubes (CNT), graphite, and graphene nanoplatelets is reported. Furthermore, the modification of filler in PTT-based nanocomposites, such as multiwall carbon nanotubes’ chemical functionalization (f-MWCNT); the use of the compatibilizer agent maleic anhydride-grafted PTT (PTT-g-MA); and the addition of a second phase are described and discussed in relation to the influence of these aspects on the electrical properties of PTT. As a result, PTT can be a polymeric matrix with great potential for use as an antistatic packaging, and it can be modified with CNT, graphite, or graphene nanoplatelets to achieve the electrical properties necessary for this application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABS:

Acrylonitrile butadiene styrene

AC:

Alternating current

AR:

Aspect ratio

CB:

Carbon black

CNT:

Carbon nanotubes

CCVD:

Chemical catalytic vapor deposition

DS:

Dielectric spectroscopy

DWCNT:

Double-wall carbon nanotubes

ESD:

Electrostatic discharge

EG:

Exfoliated graphite

EMI-SE:

Electromagnetic interference shield

EPT:

Electrical percolation threshold

f-MWCNT:

Functionalized MWCNT

GC:

Glassy carbon

GIC:

Graphite/graphene-intercalated compounds

GNP:

Graphite/graphene nanoplatelets

HDPE:

High-density polyethylene

LDPE:

Low-density polyethylene

MIL-STD:

Military Standard

MWCNT:

Multiwall carbon nanotubes

PTT:

Poly(trimethylene terephthalate)

PTT-g-MA:

Maleic anhydride-grafted PTT

rGO:

Reduced graphene/graphite oxide

SR:

Surface resistivity

SWCNT:

Single-wall carbon nanotubes

VR:

Volume resistivity

2D:

Two-dimensional

3D:

Tridimensional

1D:

One-dimensional

0D:

Zero-dimensional

σ:

Electrical conductivity

ρ:

Electrical resistivity

θ :

Phase difference between the voltage and the electrical current

ω :

Angular frequency

ε*:

Complex permittivity

f :

Frequency

i :

Electrical current

M* :

Electric modulus

V :

Electrical potential

Y * :

Admittance

Z:

Real impedance

Z* :

Complex impedance

Z’ :

Real part of complex impedance

Z" :

Imaginary part of complex impedance

References

  1. Al-Saleh MH, Sundararaj U (2008) Electromagnetic interference (EMI) shielding effectiveness of PP/PS polymer blends containing high structure carbon black. Macromol Mater Eng 293:621–630. https://doi.org/10.1002/mame.200800060

    Article  CAS  Google Scholar 

  2. Jiang D, Murugadoss V, Wang Y et al (2019) Electromagnetic interference shielding polymers and Nanocomposites―A review. Polym Rev 59:280–337. https://doi.org/10.1080/15583724.2018.1546737

    Article  CAS  Google Scholar 

  3. Kausar A, Ahmad S, Salman SM (2017) Effectiveness of polystyrene/carbon nanotube composite in electromagnetic interference shielding materials: a review. Polym Plast Technol Eng 56:1027–1042. https://doi.org/10.1080/03602559.2016.1266367

    Article  CAS  Google Scholar 

  4. Zakharychev EA, Razov EN, Semchikov YuD et al (2016) Radar absorbing properties of carbon nanotubes/polymer composites in the V-band. Bull Mater Sci 39:451–456. https://doi.org/10.1007/s12034-016-1168-0

    Article  CAS  Google Scholar 

  5. Kim S-Y, Kim S-S (2018) Design of radar absorbing structures utilizing carbon-based polymer composites. Polym Polym Compos 26, 105–110. https://doi.org/10.1177/096739111802600113

  6. Yang J, Liu Y, Liu S et al. (2017) Conducting polymer composites: material synthesis and applications in electrochemical capacitive energy storage. Mater Chem Front 1, 251–268. https://doi.org/10.1039/c6qm00150e

  7. Shen F, Pankratov D, Chi Q (2017) Graphene-conducting polymer nanocomposites for enhancing electrochemical capacitive energy storage. Curr Opin Electrochem 4:133–144. https://doi.org/10.1016/j.coelec.2017.10.023

    Article  CAS  Google Scholar 

  8. da Silva TF, Menezes F, Montagna LS et al (2019) Preparation and characterization of antistatic packaging for electronic components based on poly (lactic acid)/carbon black composites. J Appl Polym Sci 136:47273. https://doi.org/10.1002/app.47273

    Article  CAS  Google Scholar 

  9. Braga N F, Ding H, Sun L et al. (2021). Antistatic packaging based on PTT/PTT‐g‐MA/ABS/MWCNT nanocomposites: Effect of the chemical functionalization of MWCNTs. J Appl Polym Sci 138, 50005. https://doi.org/10.1002/app.50005

  10. Santos MS, Montagna LS, Rezende MC et al. (2018) A new use for glassy carbon: Development of LDPE/glassy carbon composites for antistatic packaging applications. J Appl Polym Sci 47204. https://doi.org/10.1002/app.47204

  11. Silva LN, dos Anjos EGR, Morgado GFM et al (2020) Development of antistatic packaging of polyamide 6/linear low-density polyethylene blends-based carbon black composites. Polym Bull 77:3389–3409. https://doi.org/10.1007/s00289-019-02928-3

    Article  CAS  Google Scholar 

  12. Radzuan NAM, Sulong AB, Sahari J (2017) A review of electrical conductivity models for conductive polymer composite. Int J Hydrog Energy 42:9262–9273. https://doi.org/10.1016/j.ijhydene.2016.03.045

    Article  CAS  Google Scholar 

  13. Bhadra S, Rahaman M, Khanam PN (2019) Electrical and electronic application of polymer–carbon composites. Carbon-Containing Polym Compos 397–455. https://doi.org/10.1007/978-981-13-2688-2_12

  14. Zhang W, Dehghani-Sanij AA, Blackburn RS (2007) Carbon Based Conductive Polymer Composites. J Mater Sci 42:3408–3418. https://doi.org/10.1007/s10853-007-1688-5

    Article  CAS  Google Scholar 

  15. Vieira LDS, dos Anjos EGR, Verginio GEA et al (2021) A review concerning the main factors that interfere in the electrical percolation threshold content of polymeric antistatic packaging with carbon fillers as antistatic agent. Nano Select. 1:1–13. https://doi.org/10.1002/nano.202100073

    Article  CAS  Google Scholar 

  16. Wypych G (2016) PTT poly(trimethylene terephthalate). HLAS of polym. 2:595–598. https://doi.org/10.1016/B978-1-895198-92-8.50185-3

    Article  Google Scholar 

  17. Wang L, Zhao HF, Lin JX (2010) Studies on the ultrasonic-assisted dyeing of poly (trimethylene terephthalate) fabric. Color Technol 126:243–248. https://doi.org/10.1111/j.1478-4408.2010.00253.x

    Article  CAS  Google Scholar 

  18. Zhang J (2004) Study of Poly (trimethylene terephthalate) as an engineering thermoplastics material. J Appl Polym Sci 91:1657–1666. https://doi.org/10.1002/app.13322

    Article  CAS  Google Scholar 

  19. Aravind I, Albert P, Ranganathaiah C et al (2004) Compatibilizing effect of EPM-g-MA in EPDM/poly (trimethylene terephthalate) incompatible blends. Polym 14:4925–4937. https://doi.org/10.1016/j.polymer.2004.04.063

    Article  CAS  Google Scholar 

  20. Braga NF, LaChance AM, Liu B et al (2019) Influence of compatibilizer and carbon nanotubes on mechanical, electrical, and barrier properties of PTT/ABS blends. Adv Ind and Eng Polym Res 2:121–125. https://doi.org/10.1016/j.aiepr.2019.07.002

    Article  Google Scholar 

  21. Li M, Jeong YG (2011) Preparation and characterization of high-performance poly (trimethylene terephthalate) nanocomposites reinforced with exfoliated graphite. Macromol Mater Eng 296(159–167):2011. https://doi.org/10.1002/mame.201000295

    Article  CAS  Google Scholar 

  22. Paszkiewicz S, Szymczyk A, Sui XM et al (2015) Synergetic effect of single-walled carbon nanotubes (SWCNT) and graphene nanoplatelets (GNP) in electrically conductive PTT-block-PTMO hybrid nanocomposites prepared by in situ polymerization. Compos Sci Technol 118:72–77. https://doi.org/10.1016/j.compscitech.2015.08.011

    Article  CAS  Google Scholar 

  23. Braga NF, Zaggo HM, Montanheiro TL et al (2019) Preparation of maleic anhydride grafted poly (trimethylene terephthalate)(PTT-g-MA) by reactive extrusion processing. J manuf mater process 3:37. https://doi.org/10.3390/jmmp3020037

    Article  CAS  Google Scholar 

  24. Vieira L de S, dos Anjos EGR, Verginio GEA et al. (2021). Carbon-based materials as antistatic agents for the production of antistatic packaging: a review. J Mater Sci Mater Electron 1-19. https://doi.org/10.1002/nano.202100073

  25. Silva TF da, Menezes F, Montagna LS et al. (2020) Synergistic effect of adding lignin and carbon black in poly (lactic acid). Polímeros 30. https://doi.org/10.1590/0104-1428.06819

  26. Vieira LS, Montagna LS, Marini J et al (2021) Effect of glassy carbon addition and photodegradation on the biodegradation in aqueous medium of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/glassy carbon green composites. J Appl Polym Sci 138:49740. https://doi.org/10.1002/app.50821

    Article  CAS  Google Scholar 

  27. Aranburu N, Otaegi I, Guerrica-Echevarria G (2019) Using an ionic liquid to reduce the electrical percolation threshold in biobased thermoplastic polyurethane/graphene nanocomposites. Polym 11:435. https://doi.org/10.3390/polym11030435

    Article  CAS  Google Scholar 

  28. Ozdemir E, Arenas DR, Kelly LN et al. (2020). Ethylene methyl acrylate copolymer (EMA) assisted dispersion of few-layer graphene nanoplatelets (GNP) in poly(ethylene terephthalate) (PET). Polym 205, 122836. https://doi.org/10.1016/j.polymer.2020.122836

  29. Mesquita AS, Silva LGA De, De Miranda LF (2018) Mechanical, thermal and electrical properties of polymer (Ethylene Terephthalate—PET) filled with carbono black. Charact of Miner Met Mater 20, 605- 614. https://doi.org/10.1007/978-3-319-72484-3_64

  30. Vieira L de S, Oyama IC, Montagna LS et al. (2021) Green composites for application in antistatic packaging. In: Thomas S, Balakrishnan P (eds) green composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. 429–453. https://doi.org/10.1007/978-981-15-9643-8_17

  31. ESD Association (2020) Part 6: ESD Standards. Available in: https://www.esda.org/esd-overview/esd-fundamentals/part-6-esd-standards/. Accessed: 10/03/2021

  32. Alb XII, Sm K (2009) Encyclopedia of packaging technology. Third Edition.

    Google Scholar 

  33. Pierson HO (1993) Handbook of carbon, graphite, diamonds and fullerenes: properties, processing and applications. Noyes Publications, New Jersey

    Google Scholar 

  34. Callister WD (2012) Ciência e engenharia de materiais: uma introdução. LTC, Rio de Janeiro

    Google Scholar 

  35. Sengupta R, Bhattacharya M, Bandyopadhyay S et al (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670. https://doi.org/10.1016/j.progpolymsci.2010.11.003

    Article  CAS  Google Scholar 

  36. Mukhopadhyay P, Gupta RK (2012) Graphite, graphene, and their polymer nanocomposites. CRC, New York

    Book  Google Scholar 

  37. Alshammari BA (2019) Addition of graphite filler to enhance electrical, morphological, thermal, and mechanical properties in poly (Ethylene Terephthalate): Experimental characterization and material modeling. Polym 11:1411. https://doi.org/10.3390/polym11091411

    Article  CAS  Google Scholar 

  38. Kuilla T, Bhadra S, Yao D et al (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375. https://doi.org/10.1016/j.progpolymsci.2010.07.005

    Article  CAS  Google Scholar 

  39. Krittayavathananon A, Li X, Sokolov S V et al. (2018). The solution phase aggregation of graphene nanoplates. Appl Mater Today 10, 122–126. https://doi.org/10.1016/j.apmt.2018.01.001

  40. Available in: https://medium.com/@nanografi/about-the-graphene-nanoplatelets-425c7704aa41. Access: 10/15/2021

    Google Scholar 

  41. Kinloch IA, Suhr J, Lou J et al (2018) Composites with carbon nanotubes and graphene: An outlook. Science 362:547–553. https://doi.org/10.1126/science.aat7439

    Article  CAS  Google Scholar 

  42. Aqel A, El-Nour KMMA, Ammar RAA et al (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab J Chem 5:1–23. https://doi.org/10.1016/j.arabjc.2010.08.022

    Article  CAS  Google Scholar 

  43. Rahaman M (2019) Carbon-Containing polym compos. Springer Singapore, Singapura

    Google Scholar 

  44. Doh J, Park SI, Yang Q et al (2019) The effect of carbon nanotube chirality on the electrical conductivity of polymer nanocomposites considering tunneling resistance. Nanotechnology 30:1–16. https://doi.org/10.1088/1361-6528/ab3b79

    Article  CAS  Google Scholar 

  45. Wei C, Akinwolemiwa B, Yu L et al (2019) Polymer composites with functionalized carbon nanotube and graphene. Polym Compos Funct Nanoparticles 1:211–248. https://doi.org/10.1016/B978-0-12-814064-2.00007-X

    Article  Google Scholar 

  46. Mittal G, Dhand V, Rhee KY et al (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25. https://doi.org/10.1016/j.jiec.2014.03.022

    Article  CAS  Google Scholar 

  47. Heaney MB (1999) Electrical Conductivity and Resistivity in The measurement, instrumentation and sensors, Handbook. CRC Press, John Webster

    Google Scholar 

  48. ASTM Standard D257 (1999). Standard method for DC resistance of conductance of insulating materials. Pa: Am Soc Test Mater

    Google Scholar 

  49. Dielectric and Resistive Properties of Solid Insulating Materials (2016) Determination of resistive properties (DC Methods)―volume resistance and volume resistivity―general method

    Google Scholar 

  50. Ghorbani MM, Taherian R (2019) Methods of measuring electrical properties of material in electrical conductivity in polymer-based composites: experiments, modelling and applications. Reza Taherian and Ayesha Kausar, 365–394

    Google Scholar 

  51. Gene Chase, ETS, Inc “Ohms-per-square-what” ESD Journal (2008) Available in: http://www.esdjournal.com/techpapr/ohms.htm Accessed: 10/17/2021

  52. Volume Resistivity vs. Volume Conductivity vs. Surface Resistivity. Available in: https://www.caplinq.com/blog/linqstat-volume-resistivity-vs-volume-conductivity-vs-surface-resistivity_267/ Accessed:10/19/2021

  53. Sheet Resistance Measurements of Thin Films. Available in: https://www.ossila.com/pages/sheet-resistance-measurements-thin-films Accessed: 10/08/2021

  54. Delgado A, García-Sánchez MF, M’Peko J-C et al (2003) An Elementary picture of dielectric spectroscopy in solids: Physical basis. J Chem Educ 80:1062. https://doi.org/10.1021/ed080p1062

    Article  Google Scholar 

  55. Macdonald RJ (2015) Impedance spectrocopy: Theory, experiment and aplications, 2nd edn. John Wiley & Sons, New Jersey

    Google Scholar 

  56. Debye P (1945) Polar molecules, 1945th edn. Dover Press, New York

    Google Scholar 

  57. Zaccone M, Armentano I, Cesano F et al (2020) Effect of injection molding conditions on crystalline structure and electrical resistivity of PP/MWCNT nanocomposites. Polym 12:1685. https://doi.org/10.3390/polym12081685

    Article  CAS  Google Scholar 

  58. Versavaud S, Régnier G, Gouadec G et al (2014) Influence of injection molding on the electrical properties of polyamide 12 filled with multi-walled carbon nanotubes. Polym 55:6811–6818. https://doi.org/10.1016/j.polymer.2014.10.038

    Article  CAS  Google Scholar 

  59. Montanheiro TLA et al (2015) Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites. J Mater Res 30:55–65

    Article  CAS  Google Scholar 

  60. Sun X, Sun H, Li H et al (2013) Developing polymer composite materials: Carbon nanotubes or graphene? Adv Mater 25:5153–5176. https://doi.org/10.1002/adma.201301926

    Article  CAS  Google Scholar 

  61. Krupa I, Novák I, Chodák I (2004) Electrically and thermally conductive polyethylene/graphite composites and their mechanical properties. Synth Met 145:245–252. https://doi.org/10.1016/j.synthmet.2004.05.007

    Article  CAS  Google Scholar 

  62. Huang C-L, Wu H-H, Jeng Y-C et al (2019) Electrospun graphene nanosheet-filled poly(trimethylene terephthalate) composite fibers: effects of the graphene nanosheet content on morphologies, electrical conductivity, crystallization behavior, and mechanical properties. Polym 11:164. https://doi.org/10.3390/polym11010164

    Article  CAS  Google Scholar 

  63. Huang C-L, Wang Y-J, Fan Y-C et al (2017) The effect of geometric factor of carbon nanofillers on the electrical conductivity and electromagnetic interference shielding properties of poly(trimethylene terephthalate) composites: a comparative study. J Mater Sci Mater Med 52:2560–2580. https://doi.org/10.1007/s10853-016-0549-5

    Article  CAS  Google Scholar 

  64. Pang H, Xu L, Yan Y-X et al (2014) Conductive polymer composites with segregated structures. Prog Polym Sci 39:1908–1933. https://doi.org/10.1016/j.progpolymsci.2014.07.007

    Article  CAS  Google Scholar 

  65. Ma P-C, Siddiqui NA, Marom G et al (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos Part A Appl Sci Manuf 41:1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  CAS  Google Scholar 

  66. Sianipar M, Kin SH, Khoiruddin, et al (2017) Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Adv 7:51175. https://doi.org/10.1039/C7RA08570B

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES), Finance Code 001. The authors thank FAPESP (process 2020/12501-8) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, process 310196/2018-3, 405675/2018-6, and 440312/2021-3) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natália Ferreira Braga or Fabio Roberto Passador .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Braga, N.F. et al. (2023). Antistatic Packaging for Electronic Devices of PTT-Based Polymer Blends, Composites, and Nanocomposites. In: Ajitha, A.R., Thomas, S. (eds) Poly Trimethylene Terephthalate. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7303-1_13

Download citation

Publish with us

Policies and ethics