Skip to main content

Analysis of Chemical Transport by IPSC-Derived Proximal Tubular Cell (PTC)-Like Cells and Other Emerging Human Kidney Cell Models for Drug Toxicity Screening

  • Conference paper
  • First Online:
IRC-SET 2022

Abstract

The kidney is a main target for drug-and chemical-induced toxicity, and the renal proximal tubule is frequently affected. Many widely-prescribed drugs are nephrotoxic. Reliable renal proximal tubular cell (PTC) models are needed for developing improved in vitro assays for nephrotoxicity prediction. PTC in the human kidney express various transporters for drugs and chemicals, which are often down-regulated in vitro. This renders the cells inactive to nephrotoxicants, which is a main problem in nephrotoxicity testing. Here, I addressed organic anion uptake by three different PTC models: conditionally immortalised proximal tubular epithelial cells (ciPTEC) stably transfected with OAT1 and OAT3 expression constructs (ciPTEC-OAT1 and ciPTEC-OAT3) and human-induced pluripotent stem cell (iPSC)-derived PTC-like cells. In addition, the activity of the renal organic anion transporters OAT1 and OAT3 was assessed. These transporters are important for the cellular uptake of a wide range of nephrotoxicants. The results showed that the cell culture medium has a major impact on organic anion uptake. A proprietary novel medium for PTC-like cells was formulated (Renal Tox Medium) that sustained high organic anion uptake in vitro. Furthermore, the results showed that OAT1 and/or OAT3 activity in PTC-like cells was superior compared to ciPTEC-OAT1 and ciPTEC-OAT3 cells, which are currently the PTC models favoured by the pharmaceutical industry. The results also showed that ciPTEC cell lines consisted of inhomogeneous cell populations. Together, the results suggest that PTC-like cells, in combination with the here developed proprietary Renal Tox Medium, could provide a more suitable solution for industry and academia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curthoys, N. P., & Moe, O. W. (2014). Proximal tubule function and response to acidosis. Clinical Journal of the American Society of Nephrology., 9, 1627–1638. https://doi.org/10.2215/CJN.10391012

    Article  Google Scholar 

  2. Morrissey, K. M., Stocker, S. L., Wittwer, M. B., Xu, L., & Giacomini, K. M. (2013). Renal transporters in drug development. Annual Review of Pharmacology and Toxicology, 53, 503–529. https://doi.org/10.1146/annurev-pharmtox-011112-140317

    Article  Google Scholar 

  3. Tiong, H. Y., Huang, P., Xiong, S., Li, Y., Vathsala, A., & Zink, D. (2014). Drug-induced nephrotoxicity: Clinical impact and preclinical in vitro models. Molecular Pharmaceutics, 11, 1933–1948. https://doi.org/10.1021/mp400720w

    Article  Google Scholar 

  4. Naughton, C. A. (2008). Drug-induced nephrotoxicity. American Family Physician, 78, 743–750. https://pubmed.ncbi.nlm.nih.gov/18819242/

  5. Kaufman, J., Dhakal, M., Patel, B., & Hamburger, R. (1991). Community-acquired acute renal failure. American Journal of Kidney Diseases, 17(2), 191–198. https://doi.org/10.1016/S0272-6386(12)81128-0

    Article  Google Scholar 

  6. Nash, K., Hafeez, A., & Hou, S. (2002). Hospital-acquired renal insufficiency. American Journal of Kidney Diseases, 39(5), 930–936. https://doi.org/10.1053/ajkd.2002.32766

  7. Bellomo, R. (2006). The epidemiology of acute renal failure: 1975 versus 2005. Current Opinion in Critical Care, 12(6), 557–560. https://doi.org/10.1097/01.ccx.0000247443.86628.68

    Article  Google Scholar 

  8. Guengerich, F. P. (2011). Mechanisms of drug toxicity and relevance to pharmaceutical development. Drug Metabolism and Pharmacokinetics, 26(1), 3–14. https://doi.org/10.2133/dmpk.dmpk-10-rv-062

    Article  Google Scholar 

  9. Soo, J. Y., Jansen, J., Masereeuw, R., & Little, M. H. (2018). Advances in predictive in vitro models of drug-induced nephrotoxicity. Nature Reviews Nephrology, 14(6), 378–393. https://doi.org/10.1038/s41581-018-0003-9

    Article  Google Scholar 

  10. Sjogren, A. K., Breitholtz, K., Ahlberg, E., et al. (2018). A novel multi-parametric high content screening assay in ciPTEC-OAT1 to predict drug-induced nephrotoxicity during drug discovery. Archives of Toxicology, 92(10), 3175–3190. https://doi.org/10.1007/s00204-018-2284-y

    Article  Google Scholar 

  11. Li, S., Zhao, J., Huang, R., Steiner, T., Bourner, M., Mitchell, M., Thompson, D. C., Zhao, B., & Xia, M. (2017). Development and application of human renal proximal tubule epithelial cells for assessment of compound toxicity. Current Chemical Genomics and Translational Medicine, 11, 19–30. https://doi.org/10.2174/2213988501711010019

    Article  Google Scholar 

  12. Kandasamy, K., Chuah, J. K., Su, R., Huang, P., Eng, K. G., Xiong, S., Li, Y., Chia, C. S., Loo, L. H., & Zink, D. (2015). Prediction of drug-induced nephrotoxicity and injury mechanisms with human induced pluripotent stem cell-derived cells and machine learning methods. Scientific Reports, 5, 12337. https://doi.org/10.1038/srep12337

    Article  ADS  Google Scholar 

  13. Chuah, J., & Zink, D. (2017). Stem cell-derived kidney cells and organoids: Recent breakthroughs and emerging applications. Biotechnology Advances, 35(2), 150–167. https://doi.org/10.1016/j.biotechadv.2016.12.001

    Article  Google Scholar 

  14. Zink, D., Chuah, J., & Ying, J. Y. (2020). Assessing toxicity with human cell-based in vitro methods. Trends in Molecular Medicine, 26(6), 570–582. https://doi.org/10.1016/j.molmed.2020.01.008

    Article  Google Scholar 

  15. Jenkinson, S. E., Chung, G. W., van Loon, E., Bakar, N. S., Dalzell, A. M., & Brown, C. D. (2012). The limitations of renal epithelial cell line HK-2 as amodel of drug transporter expression and function in the proximal tubule. Pflugers Archiv—European Journal of Physiology, 464, 601–611. https://doi.org/10.1007/s00424-012-1163-2

    Article  Google Scholar 

  16. Weiland, C., Ahr, H. J., Vohr, H. W., & Ellinger-Ziegelbauer, H. (2007). Characterization of primary rat proximal tubular cells by gene expression analysis. Toxicology in Vitro, 21, 466–491. https://doi.org/10.1016/j.tiv.2006.10.008

    Article  Google Scholar 

  17. Wang, L., & Sweet, D. H. (2013). Renal organic anion transporters (SLC22 family): Expression, regulation, roles in toxicity, and impact on injury and disease. The AAPS Journal, 15(1), 53–69. https://doi.org/10.1208/s12248-012-9413-y

    Article  Google Scholar 

  18. Nigam, S. K., Bush, K. T., Martovetsky, G., Ahn, S. Y., Liu, H. C., Richard, E., Bhatnagar, V., & Wu, W. (2015). The organic anion transporter (OAT) family: A systems biology perspective. Physiological Reviews, 95(1), 83–123. https://doi.org/10.1152/physrev.00025.2013

    Article  Google Scholar 

  19. Zeng, Y., Zhang, R., Wu, J., Liu, M., Peng, W., Yu, X., & Yang, X. (2012). Organic anion transporter 1 (OAT1) involved in renal cell transport of aristolochic acid I. Human & Experimental Toxicology, 31(8), 759–770. https://doi.org/10.1177/0960327111424302

    Article  Google Scholar 

  20. Motohashi, H., Sakurai, Y., Saito, H., Masuda, S., Urakami, Y., Goto, M., Fukatsu, A., Ogawa, O., & Inui, K. I. (2002). Gene expression levels and immunolocalization of organic ion transporters in the human kidney. Journal of the American Society of Nephrology: JASN, 13(4), 866–874. https://doi.org/10.1681/ASN.V134866

    Article  Google Scholar 

  21. Wilmer, M. J., Saleem, M. A., Masereeuw, R., Ni, L., van der Velden, T. J., Russel, F. G., Mathieson, P. W., Monnens, L. A., van den Heuvel, L. P., & Levtchenko, E. N. (2010). Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters. Cell and Tissue Research, 339(2), 449–457. https://doi.org/10.1007/s00441-009-0882-y

    Article  Google Scholar 

  22. Nieskens, T. T., Peters, J. G., Schreurs, M. J., Smits, N., Woestenenk, R., Jansen, K., van der Made, T. K., Röring, M., Hilgendorf, C., Wilmer, M. J., & Masereeuw, R. (2016). A human renal proximal tubule cell line with stable organic anion transporter 1 and 3 expression predictive for antiviral-induced toxicity. The AAPS Journal, 18(2), 465–475. https://doi.org/10.1208/s12248-016-9871-8

    Article  Google Scholar 

  23. Vormann, M. K., Vriend, J., Lanz, H. L., Gijzen, L., van den Heuvel, A., Hutter, S., Joore, J., Trietsch, S. J., Stuut, C., Nieskens, T., Peters, J., Ramp, D., Caj, M., Russel, F., Jacobsen, B., Roth, A., Lu, S., Polli, J. W., Naidoo, A. A., & Vulto, P., et al. (2021). Implementation of a human renal proximal tubule on a chip for nephrotoxicity and drug interaction studies. Journal of Pharmaceutical Sciences, 110(4), 1601–1614.https://doi.org/10.1016/j.xphs.2021.01.028

  24. Truong, D. M., Kaler, G., Khandelwal, A., Swaan, P. W., & Nigam, S. K. (2008). Multi-level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. The Journal of Biological Chemistry, 283(13), 8654–8663. https://doi.org/10.1074/jbc.M708615200

    Article  Google Scholar 

  25. Moss, D. M., Neary, M., & Owen, A. (2014). The role of drug transporters in the kidney: Lessons from tenofovir. Frontiers in Pharmacology, 5, 248. https://doi.org/10.3389/fphar.2014.00248

    Article  Google Scholar 

  26. Zhu, L., Lu, L., Wang, S., Wu, J., Shi, J., Yan, T., Xie, C., Li, Q., Hu, M., & Liu, Z. (2017). Oral absorption basics: Pathways and physicochemical and biological factors affecting absorption. In Developing solid oral dosage forms (2nd edn). Academic Press. https://doi.org/10.1016/B978-0-12-802447-8.00011-X

  27. Yohannes Hagos, Daniel Stein, Bernhard Ugele, Gerhard Burckhardt, Andrew Bahn, 2007. Human Renal Organic Anion Transporter 4 Operates as an Asymmetric Urate Transporter. JASN, 18 (2) 430–439; https://doi.org/10.1681/ASN.2006040415

  28. Henjakovic, M., Hagos, Y., Krick, W., Burckhardt, G., & Burckhardt, B. C. (2015). Human organic anion transporter 2 is distinct from organic anion transporters 1 and 3 with respect to transport function. American Journal of Physiology. Renal Physiology, 309(10), F843–F851. https://doi.org/10.1152/ajprenal.00140.2015

    Article  Google Scholar 

Download references

Acknowledgements

I’d like to thank my two mentors, Dr. Riga Tawo (NBL-SIFBI, A*STAR) and Team Leader and Principal Research Scientist Dr. Daniele Zink (NBL-SIFBI, A*STAR) for their unwavering support, invaluable guidance and utmost dedication. I also express my deepest gratitude to A*STAR Senior Fellow Professor Jackie Y. Ying, and NBL Director and YRP Chair Ms Noreena AbuBakar for this incredible experience. They have all inspired me in immeasurable ways. This work was supported by the NanoBioLab (NBL), Biomedical Research Council, A*STAR and the Singapore Institute of Food and Biotechnology Innovation (SIFBI), Biomedical Research Council, A*STAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Treruangrachada Anantaya Kylin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kylin, T.A., Tawo, R., Zink, D. (2023). Analysis of Chemical Transport by IPSC-Derived Proximal Tubular Cell (PTC)-Like Cells and Other Emerging Human Kidney Cell Models for Drug Toxicity Screening. In: Guo, H., et al. IRC-SET 2022. Springer, Singapore. https://doi.org/10.1007/978-981-19-7222-5_26

Download citation

Publish with us

Policies and ethics