Skip to main content

Synthesis of Carbon Nanotubes with Merocyanine Dyes Decorated Carbon Nanotubes for Biomedical Imaging Devices

  • Chapter
  • First Online:
Handbook of Porous Carbon Materials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 702 Accesses

Abstract

We have investigated the interactions between SWCNTs with merocyanine dye molecules to design the optical properties and visualisation for biomedical device imaging applications. When SWCNTs interacted with merocyanine dyes used to fabricate the light-absorbing nano-array structure, the fluorescence emission of the SWCNTs with merocyanine dye structure was quenched by dip-coating technique. The SWCNT in the presence of merocyanine dye molecules shows that there is an alteration in the absorption intensity and shows an increase of several folds of the fluorescence intensity. The assembly of CNT/cyanine dye nanostructure was studied by Raman spectroscopy and demonstrated that a frequency shift in Raman spectra indicating non-covalent binding. The surface morphology of MWCNT/merocyanine dye nanostructures was investigated by using TEM, AFM and SEM. The results of fluorescence study show that three component nanohybrids were visualised through confocal microscopy. When UV light is used to stimulate the coated MWCNT/cyanine composite, it becomes fluorescent and can act as a scaffold for merocyanine dyes to self-assemble with higher quantum yields. The current study proved that a fluorophore lights up when it attaches to SWCNTs for the first time, presenting a novel strategy for fluorescent tagging of SWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Google Scholar 

  2. DimitriosTasis NT (2006) Alberto Bianco, and maurizio prato, chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  Google Scholar 

  3. Wang X, Wang C, Cheng L, Lee S-T, Liu Z (2012) Noble metal coated single-walledcarbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J Am Chem Soc 134:7414–7422

    Article  CAS  PubMed  Google Scholar 

  4. Wu HC et al (2010) Chemistry of carbon nanotubes in biomedical applications. J Mater Chem 20(6):1036–1052

    Article  CAS  Google Scholar 

  5. Marega R, Bergamin M, Aroulmoji V, Dinon F, Prato M, Murano E (2011) Hyaluronan–carbon nanotube derivatives: synthesis, conjugation with modeldrugs, and DOSY NMR Characterization. Eur J Org Chem 5617–5625

    Google Scholar 

  6. Viel S, Mannina L, Segre A (2002) Detection of a complex by diffusion-ordered spectroscopy (DOSY). Tetrahedron Lett 43:2515–2519

    Article  CAS  Google Scholar 

  7. Marega R, Aroulmoji V, Bergamin M, Feruglio L, Dinon F. Two-Dimensional diffusion-ordered NMR spectroscopy as a tool for monitoring functionalized carbon nanotube purification and composition

    Google Scholar 

  8. Dai HJ (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044

    Article  CAS  PubMed  Google Scholar 

  9. Dresselhaus MS, Dai H (2004) Carbon nanotubes: continued innovations and challenges. MRS Bull 29:237–239

    Article  Google Scholar 

  10. Bekyarova E, Ni Y, Malarkey EB, Montana V, McWilliams JL, Haddon RC, Parpura V (2005) Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol 1:3–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kostarelos K, Bianco A, Prato M (2009) Promises, facts, and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4:627–633

    Article  CAS  PubMed  Google Scholar 

  12. Liu Z, Yang K, Lee S-T (2011) Single-walled carbon nanotubes in biomedical imaging. J Mater Chem 21:586–598

    Article  CAS  Google Scholar 

  13. Diao S, Hong G, Robinson JT, Jiao L, Antaris AL, Wu JZ, Choi CL, Dai H (2012) Chiralityenriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging. J Am Chem Soc 134:16971–16974

    Article  CAS  PubMed  Google Scholar 

  14. Setaro A, Adeli M, Glaeske M, Przyrembel D, Bisswanger T, Gordeev G, Maschietto F, Faghani A, Paulus B, Weinelt M, Arenal R, Haag R, Reich S (2017) Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications. Nat Comm 8:14281

    Article  CAS  Google Scholar 

  15. Guo XF, Small JP, Klare JE, Wang YL, Purewal MS, Tam IW et al (2006) Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311(5759):356–359

    Article  CAS  PubMed  Google Scholar 

  16. Tournus F, Latil S, Heggie MI, Charlier JC (2005) π-stacking interaction between carbon nanotubes and organic molecules. Phys Rev B 72:075431

    Article  Google Scholar 

  17. Heller DA, Jin H, Martinez BM, Patel D, Miller BM, Yeung TK et al (2009) Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat Nanotechnol 4:114–120

    Article  CAS  PubMed  Google Scholar 

  18. Welsher K, Sherlock SP, Dai H (2011) Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl AcadSci USA 108:8943

    Article  CAS  Google Scholar 

  19. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297–593

    Google Scholar 

  20. Ju S-Y, Kopcha WP, Papadimitrakopoulos F (2009) Brightly fluorescent single-walled carbon nanotubes via an oxygen excluding surfactant organization. Science 323–1319

    Google Scholar 

  21. Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D et al (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 4:773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim J-H, Heller DA, Hong Jin, Barone PW, Song C, Zhang J et al (2009) The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection. Nat Chem 1:473

    Google Scholar 

  23. James NS, Cheruku RR, Missert JR, Sunar U, Pandey RK (1842) Measurement of cyanine dye photobleaching in photosensitizer cyanine dye conjugates could help in optimizing light dosimetry for improved photodynamic therapy of cancer. Molecules 2018:23

    Google Scholar 

  24. Velapoldi RA, Tonnesen HH (2004) Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectra region. J Fluoresc 14:465–472

    Article  CAS  PubMed  Google Scholar 

  25. Toutchkine A, Han W, Ullmann M, Liu T, Bashford D, Noodleman L, Hahn KM (2007) Experimental and DFT studies: novel structural modifications greatly enhance the solvent sensitivity of live cell imaging dyes. J Phys Chem A 111:10849–10860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ishizawa T, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki T, Hasegawa K, Beck Y, Fukayama M, Kokudo N (2009) Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 115:2491–2504

    Article  PubMed  Google Scholar 

  27. Sekijima M, Tojimbara T, Sato S, Nakamura M, Kawase T, Kai K, Urashima Y, Nakajima I, Fuchinoue S, Teraoka S (2004) An intraoperative fluorescent imaging system in organ transplantation. Transplant Proc 36:2188–2190

    Article  CAS  PubMed  Google Scholar 

  28. Morimoto S (2007) In-vivo imaging of tumors with protease activated near-infrared fluorescent probes. Tanpakushitsukakusankoso, Protein, Nucleic Acid Enzyme 52:1774–1775

    Google Scholar 

  29. Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, Natan MJ, Gambhir SS (2009) Multiplexed imaging of surface enhanced Raman scattering nanotagsinliving mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci U S A 106:13511–13516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lamprecht C, Gierlinger N, Heister E, Unterauer B, Plochberger B, Brameshuber M, Hinterdorfer P, Hild S, Ebner A (2012) Mapping the intracellular distribution of carbon nanotubes after targeted delivery to carcinoma cells using confocal Raman imaging as a label-free technique. J Phys Condens Matter 24:164206–164216

    Article  CAS  PubMed  Google Scholar 

  31. Wagnieres GA, Star WM, Wilson BC (1998) In vivo fluorescence spectroscopy and Raman imaging for oncological applications. Photochem Photobiol 68:603–632

    Article  CAS  PubMed  Google Scholar 

  32. Beqa L, Fan Z, Singh AK, Senapati D, Ray PC (2011) Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. ACS Appl Mater Interfaces 3:3316–3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu Z, Tabakman S, Sherlock S, Li X, Chen Z, Jiang K, Fan S, Dai H (2010) Multiplexed five-color molecular imaging of cancer cells and tumor tissues with carbon nanotube Raman tags in the near-infrared. Nano Res 3:222–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z (2012) Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater 24:1868–1872

    Article  CAS  PubMed  Google Scholar 

  35. Ku G, Zhou M, Song S, Huang Q, Hazle J, Li C (2012) Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 6:7489–7496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Agarwal A, Huang S, ODonnell M, Day K, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102:064701–064704

    Google Scholar 

  37. Robinson JT, Welsher K, Tabakman SM, Sherlock SP, Wang H, Luong R, Dai H (2010) High performance in vivo near-IR (N1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res 3:779–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu X, Tao H, Yang K, Zhang S, Lee S-T, Liu Z (2011) Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 32:144–151

    Article  PubMed  Google Scholar 

  39. Moon HK, Lee SH, Choi HC (2009) In vivo near-infraredmediatedtumor destruction by photothermal effect of carbon nanotubes. ACS Nano 3:3707–3713

    Article  CAS  PubMed  Google Scholar 

  40. MacNevin CJ, Gremyachinskiy D, Hsu CW, Li L, Rougie M, Davis TT, Hahn KM (2013) Environment-sensing merocyanine dyes for live cell imaging, applications. Bioconjugate Chem 24:215−223

    Google Scholar 

  41. Al Faraj A, Cieslar K, Lacroix G, Gaillard S, Canet-Soulas E, Cremillieux Y (2009) In vivo imaging of carbon nanotube bio distribution using magnetic resonance imaging. Nano Lett 9:1023–1027

    Google Scholar 

  42. Miyawaki J, Yudasaka M, Imai H, Yorimitsu H, Isobe H, Nakamura E, Iijima S (2006) Synthesis of ultrafine Gd2O3 nanoparticles inside single-wall carbon nanohorns. J Phys Chem B 110:5179–5181

    Article  CAS  PubMed  Google Scholar 

  43. Richard C, Doan B-T, Beloeil J-C, Bessodes M, Tóth É, Scherman D (2008) Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: toward powerful T1 and T2 MRI contrast agents. Nano Lett 8:232–236

    Article  CAS  PubMed  Google Scholar 

  44. Wu H, Liu G, Wang X, Zhang J, Chen Y, Shi J, Yang H, Hu H, Yang S (2011) Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomater 7:3496–3504

    Article  CAS  PubMed  Google Scholar 

  45. Ananta JS, Matson ML, Tang AM, Mandal T, Lin S, Wong K, Wong ST, Wilson LJ (2009) Single-walled carbon nanotube materials as T2-weighted MRI contrast agents. J Phys Chem C 113:19369–19372

    Article  CAS  Google Scholar 

  46. Wang H, Wang J, Deng X, Sun H, Shi Z, Gu Z, Liu Y, Zhaoc Y (2004) Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 4:1019–1024

    Article  CAS  PubMed  Google Scholar 

  47. Deng X, Yang S, Nie H, Wang H, Liu Y (2008) A generally adoptable radiotracingmethod for tracking carbon nanotubes in animals. Nanotechnology 19:075101

    Article  PubMed  Google Scholar 

  48. McDevitt MR, Chattopadhyay D, Jaggi JS, Finn RD, Zanzonico PB, Villa C, Rey D, Mendenhall J, Batt CA, Njardarson JT (2007) PET imaging of soluble yttrium-86-labeledcarbon nanotubes in mice. PLoS ONE 2:e907

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hong SY, Tobias G, Al-Jamal KT, Ballesteros B, Ali-Boucetta H, Lozano-Perez S, Nellist PD, Sim RB, Finucane C, Mather SJ (2010) Filled and glycosylated carbon nanotubes for in vivo radio emitter localization and imaging. Nat Mater 9:485–490

    Article  CAS  PubMed  Google Scholar 

  50. Brooker LGS, White FL, Sprague RH (1951) Colorand constitution. IX. Absorption of cyanines derived from 3-methylisoquinoline, a rule relating basicity and absorption in symmetrical cyanines. J Am Chem Soc 73:1087–1093

    Article  CAS  Google Scholar 

  51. Brooker LGS, Keyes GH, Sprague RH, VanDyke RH, VanLare E, VanZandt G, White FL, Cressman HWJ, Dent SG Jr (1951) Color and constitution. X. Absorption of the merocyanines. J Am Chem Soc 73:5332–5350

    Article  CAS  Google Scholar 

  52. Kulinich AV, Ishchenko AA (2009) Merocyanine dyes: synthesis, structure, properties and applications. Russ Chem Rev 78(2):141–164

    Article  CAS  Google Scholar 

  53. Shirinian VZ, Shimkin AA (2008) Merocyanines: synthesis and application. Top Heterocycl Chem 14:75–105. https://doi.org/10.1007/7081_2007_110

  54. Toutchkine A, Nguyen D-V, Hahn KM (2007) Merocyanine dyes with improved photostability. Org Lett 9(15):2775–2777

    Google Scholar 

  55. Bouit PA, Rauh D, Neugebauer S, Delgado JL, Piazza ED, Rigaut S, Maury O, Andraud C, Dyakonov V, Martín N (2009) A “cyanine−cyanine” salt exhibiting photovoltaic properties. Org Lett 11:4806−4809

    Google Scholar 

  56. Brooker LGS, Keyes GH, Sprague RH, VanDyke RH, VanLare E, VanZandt G, White FL (1951) The cyanine dye series. XI The merocyanines. J Am Chem Soc 73:5326–5332

    Article  CAS  Google Scholar 

  57. Lavanya Dhevi R, Vijayalakshmi KA, Ranjitha S. A review-DFT, UV, FT-Raman, FT-IR, homo-lumo and hyper polarizability of 1, 3-dimethyl-5-[(1-methyl-2pyrrolidinylidene) Ethylidene. Int J Chem Sci Res 08–21

    Google Scholar 

  58. Steiger R, Pugin R, Heier J (2009) J-aggregation of cyanine dyes by self-assembly. Colloids Surf B 74:484−491

    Google Scholar 

  59. Behera GB, Behera PK, Mishra BK (2007) Cyanine Dyes: self aggregation and behaviour in surfactants. A review. J Surface Sci Technol 23:1–31

    CAS  Google Scholar 

  60. Lutsyk P, Piryatinski Y, AlAraimi M, Arif R, Shandura M, Kachkovsky O, Verbitsky A, Rozhin A (2016) Emergence of Additional visible-range photoluminescence due to aggregation of cyanine dye: astraphloxin on carbon nanotubes dispersed with anionic surfactant. J Phys Chem C 120(36):20378–20386

    Google Scholar 

  61. Del Canto E, Flavin K, Natali M, Perova T, Giordan S (2010) Functionalization of single-walled carbon nanotubes with optically switchable spiropyrans. Carbon 48(10):2815–2824

    Google Scholar 

  62. Edge M, Allen NS, Jewitt TS, Horie CV (1989) Fundamental aspects of the degradation of cellulose triacetate base cinematograph FLM. Polym Degrad Stabil 25:345–362

    Article  CAS  Google Scholar 

  63. Carter EA, Swarbrick B, Harrison TM et al (2020) Rapid identification of cellulose nitrate and cellulose acetate film in historic photograph collections. HeritSci 8:51. https://doi.org/10.1186/s40494-020-00395-y

    Article  CAS  Google Scholar 

  64. Bürckstümmer NM, Kronenberg K, Meerholz F (2010) Würthner near-infrared absorbing merocyanine dyes for bulk heterojunction solar cells H. Org Lett 12:3666

    Article  PubMed  Google Scholar 

  65. Zhao X, Yang Y, Yu Y, Guo S, Wang W, Zhu S (2019) A cyanine-derivative photosensitizer with enhanced photostability for mitochondria-targeted photodynamic therapy. Chem Commun 55:13542–13545

    Article  CAS  Google Scholar 

  66. Delaey E, van Laar F, De Vos D, Kamuhabwa A, Jacobs P, de Witte P (2000) A comparative study of the photosensitizing characteristics of some cyanine dyes. J Photochem Photobiol B Biol 55:27–36

    Article  CAS  Google Scholar 

  67. Hobley J, Malatesta V, Millini R, Parker WO (2000) Merocyanine and photomerocyanine dyes. Mol Cryst Liq Cryst Sci Technol. Sect A. Mol Cryst Liq Cryst 345(1):329–334

    Google Scholar 

  68. Takayanagi M, Nakata M, Ozaki Y, Iriyama K, Tasumi M (1997) Intermolecular interactions of merocyanine dyes studied by visible absorption, resonance Raman and infrared spectroscopies. J Molecul Struct 407(2–3):85–92

    Google Scholar 

  69. Carlson LJ, Maccagnano SE, Zheng M, Silcox J, Krauss TD (2007) Fluorescence efficiency of individual carbon nanotubes. Nano Lett 7:3698

    Article  CAS  PubMed  Google Scholar 

  70. Hong G et al (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18:1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hoebeke M, Piette J, Van de Vorst A (1990) Viscosity dependent isomerization and fluorescence yields of Merocyanine 540. J Photochem Photobiol B 4:273−282

    Google Scholar 

  72. Shandura MP, Kovtun YuP, Yakubovskyi VP, Piryatinski YuP, Lutsyk PM, Perminov RJ, Arif RN, Verbitsky AB, Rozhin A (2014) Dioxaborine dyes as fluorescent probes for amines and carbon nanotubes. Sens Lett 12:1361–1367

    Article  Google Scholar 

  73. Macuil RD, Lopez MR, Díaz AO, Camacho Pernas V (2009) Spectroscopy analysis of spiropyran-merocyanine molecular transformation. J Phys: Conf Series 167: 012038; Delgado R, Published Under Licence Byiop publishing ltd.; Delgado Macuil R et al, Latin American symposium on solid state physics, 5–10,October 2008, Puerto Iguazú, Argentina

    Google Scholar 

  74. Hong G, Tabakman SM, Welsher K, Wang H, Wang X, Dai H, Matsuda K, Kanemitsu Y, Irie K, Saiki T, Someya T, Miyauchi Y, Maruyama S (2010) Metal-enhanced fluorescence of carbon nanotubes. J Am Chem Soc 132:15920

    Article  CAS  PubMed  Google Scholar 

  75. Gaufrès E, Tang NY-W, Lapointe F, Cabana J, Nadon M-A, Cottenye N, Raymond F, Szkopek T, Martel R (2014) Giant Raman scattering from J-aggregated dyes inside carbon nanotubes for multispectral imaging. Nat Photonics 8:72

    Google Scholar 

  76. Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl AcadSci USA 105:1410

    Article  CAS  Google Scholar 

  77. Cronin SB, Swan AK, Uuml nl, SM, Goldberg BB, Dresselhaus MS, Tinkham M (2004) Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes. Phys Rev Lett 93(16):167401

    Google Scholar 

  78. Cronin SB, Swan AK, Uuml nl, SM, Goldberg BB, Dresselhaus MS, Tinkham M (2005) Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys Rev B 72(3):035425

    Google Scholar 

  79. Gao B, Jiang L, Ling X, Zhang J, Liu Z (2008) Chirality-dependent Raman frequency variation of single-walled carbon nanotubes under uniaxial strain. J Phys Chem C 112(51):20123–20125

    Article  CAS  Google Scholar 

  80. Liu Z, Zhang J, Gao B (2009) Raman spectroscopy of strained single-walled carbon nanotubes. Chem Commun (45):6902–6918

    Google Scholar 

  81. Onai Y, Mamiya M, Kobayashi M, Shinohara H, Sato H (1992) Raman spectroscopic studies of long-lived colored merocyanine conformers in the aggregates: a poor-man’s time-resolved study. In: Takahashi H (eds) Time-resolved vibrational spectroscopy V. Springer proceedings in physics, vol 68. Springer, Berlin, Heidelberg Pl

    Google Scholar 

  82. Sayama K, Hara K, Ohga Y, Shinpou A, Suga S, Arakawa H (2001) Significant effects of the distance between the cyanine dye skeleton and the semiconductor surface on the photo electrochemical properties of dye-sensitized porous semiconductor electrodes. New J Chem 25:200–206

    Article  CAS  Google Scholar 

  83. Bluemmel P, Setaro A, Maity C, Hecht S, Reich S (2012) Tuning the interaction between carbon nanotubes and dipole switches: the influence of the change of the nanotube–spiropyran distance. J. Phys. Condensed Matt 24:394005

    Google Scholar 

  84. Lefebvre J, Homma Y, Finnie P (2003) Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes. Phys Rev Lett 90, 17401

    Google Scholar 

  85. Oyama Y, Saito R, Sato K, Jiang J, Samsonidze GG, Grüneis A, Miyauchi Y, Maruyama S, Jorio A, Dresselhaus G, Dresselhaus M (2006) Photoluminescence intensity of single-wallcarbon nanotubes. Carbon 44:873

    Article  CAS  Google Scholar 

  86. Sakashita T, Miyauchi Y, Matsuda K, Kanemitsu Y (2010) Plasmon-assisted photoluminescence enhancement of single walled carbon nanotubes on metal surfaces. Appl Phys Lett 97:063110

    Article  Google Scholar 

  87. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Science 298:2361–2366. https://doi.org/10.1126/science.1078727

    Article  CAS  PubMed  Google Scholar 

  88. Bachilo SM, Balzano L, Herrera JE, Pompeo F, Resasco DE, Weisman RB (2003) J Am Chem Soc 125:11186–11187. https://doi.org/10.1021/ja036622cControllingDye(Merocyanine-540)AggregationonNanostructuredTiO2Films

    Article  CAS  PubMed  Google Scholar 

  89. Chami Khazraji A, Hotchandani S, Das S, Kamat PV (1999) An organized assembly approach for enhancing the efficiency of photosensitization. J Phys Chem B 103:4693–4700

    Google Scholar 

  90. Mei X, Cho SJ, Fan B, Ouyang J (2010) High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode. Nanotechnology 21, 395202

    Google Scholar 

  91. Ikeda H, Sakai T, Kawasaki K (1991) Nonlinear optical properties of cyanine dyes. Chem Phys Lett 179(5,6)

    Google Scholar 

  92. Pan F, Wong MS, Gramlich V, Bosshard C, Gunther P (1996) J Am Chem Soc 118:6315

    Article  CAS  Google Scholar 

  93. Tsuboi K, Seki K, Ouchi Y, Fujita K, Kajikawa K (2003) Jpn J Appl Phys 42:607

    Article  CAS  Google Scholar 

  94. Cambré S, Campo J, Beirnaert C, Verlackt C, Cool P, Wenseleers W (2015) Asymmetric dyes align inside carbon nanotubes to yield a large nonlinear optical response. Nat Nanotechnol 10:248

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ranjitha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranjitha, S., Lavanya Dhevi, R., Sudhakar, C., Govindasamy, R. (2023). Synthesis of Carbon Nanotubes with Merocyanine Dyes Decorated Carbon Nanotubes for Biomedical Imaging Devices. In: Grace, A.N., Sonar, P., Bhardwaj, P., Chakravorty, A. (eds) Handbook of Porous Carbon Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7188-4_40

Download citation

Publish with us

Policies and ethics