Skip to main content

Biocompatible Carbon-Coated Magnetic Nanoparticles for Biomedical Applications

  • Chapter
  • First Online:
Handbook of Porous Carbon Materials

Abstract

Both magnetic and carbon materials are known to humankind for many centuries, and both materials have played a pivotal role in both civilization as well as in technological development. Still, many researchers are fascinated about both the materials due to the unfolding of new properties and technologies. Many researchers have studied the combination of magnetic and carbon nanomaterials for biomedical applications. Currently, carbon-coated magnetic nanoparticles, with suitable surface functionalization, are widely used in many biomedical applications such as cancer tumor diagnosis and treatment. Magnetic nanoparticles core is coated with carbon shell, and the resultant core–shell nanoparticles show large specific surface area, superior chemical stability, excellent colloidal stability, and good hemo- and cytocompatibility which are essential for biomedical applications. This chapter systematically presents recent advances in such core–shell materials and their biomedical applications with suitable surface functionalization. The most widely used allotropes of carbon (fullerenes, carbon dots, carbon nanotubes, graphene, and porous carbon) in biomedical applications are presented with suitable magnetic materials and surface functionalization. These multifunctional materials have the potential to enhance: (a) MRI and florescent contrast image in tumor diagnosis, (b) drug loading capacity (>90%) in targeted drug delivery, rapid and controlled drug release under different pH conditions for chemotherapy, (c) enhance chemotherapy efficacy by adjuvant hyperthermia therapy. Hyperthermia is achieved by either photothermal therapy or magnetic hyperthermia therapy or a combination of both using suitable nanocomposite material. In a nutshell, this chapter summarizes the present-day research advances on carbon-encapsulated magnetic nanocomposites for MRI and fluorescent contrast imaging for tumor diagnosis, targeted drug delivery for cancer chemotherapy, and magnetic hyperthermia and photothermal therapy for adjuvant therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frimpong RA, Hilt JZ (2010) Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomedicine 5(9):1401–1414

    Article  CAS  PubMed  Google Scholar 

  2. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Research Letters 7(1)

    Google Scholar 

  3. Kumar A, Chowdhuri AR, Laha D, Chandra S, Karmakar P, Sahu SK (2016) One-pot synthesis of carbon dot-entrenched chitosan-modified magnetic nanoparticles for fluorescence-based Cu2+ ion sensing and cell imaging. RSC Adv 6(64):58979–58987

    Article  CAS  Google Scholar 

  4. Manohar A, Krishnamoorthi C (2017) Synthesis and magnetic hyperthermia studies on high susceptible Fe1−xMgxFe2O4 superparamagnetic nanospheres. J Magn Magn Mater 443:267–274

    Article  CAS  Google Scholar 

  5. Hedayatnasab Z, Abnisa F, Daud WMAW (2017) Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 123:174–196

    Article  CAS  Google Scholar 

  6. Liu T, Bai R, Zhou H, Wang R, Liu J, Zhao Y, Chen C (2020) The effect of size and surface ligands of iron oxide nanoparticles on blood compatibility. RSC Adv 10(13):7559–7569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boles MA, Ling D, Hyeon T, Talapin DV (2016) The surface science of nanocrystals. Nat Mater 15(2):141–153

    Article  CAS  PubMed  Google Scholar 

  8. Bordet A, Landis RF, Lee YW, Tonga GY, Asensio JM, Li CH, Fazzini PF, Soulantica K, Rotello VM, Chaudret B (2019) Water-dispersible and biocompatible iron carbide nanoparticles with high specific absorption rate. ACS Nano 13(3):2870–2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sarma L, Aomoa N, Sarmah T, Sarma S, Srinivasan A, Sharma G, Gupta A, Reddy VR, Satpati B, Srivastava DN, Deka S, Pandey LM, Kakati M (2018) Synthesis of finest superparamagnetic carbon-encapsulated magnetic nanoparticles by a plasma expansion method for biomedical applications. J Alloy Compd 749:768–775

    Article  CAS  Google Scholar 

  10. Terrones M, Botello-Méndez AR, Campos-Delgado J (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5(4):351–372

    Article  Google Scholar 

  11. Anwar S, Ding H, Xu M (2019) Recent advances in synthesis, optical properties, and biomedical applications of carbon dots. ACS Appl Bio Mater 2(6):2317–2338

    Article  CAS  PubMed  Google Scholar 

  12. Yang ST, Wang X, Wang H (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C 113(42):18110–18114

    Article  CAS  Google Scholar 

  13. Han C, Xu H, Wang R, Wang K, Dai Y, Liu Q, Guo M, Li J, Xu K (2016) Synthesis of a multifunctional manganese(II)-carbon dots hybrid and its application as an efficient magnetic-fluorescent imaging probe for ovarian cancer cell imaging. J Mater Chem B 4(35):5798–5802

    Article  CAS  PubMed  Google Scholar 

  14. Chowdhuri AR, Singh T, Ghosh SK, Sahu SK (2016) Carbon dots embedded magnetic nanoparticles @Chitosan @Metal organic framework as a nanoprobe for pH sensitive targeted anticancer drug delivery. ACS Appl Mater Interfaces 8(26):16573–16583

    Article  CAS  PubMed  Google Scholar 

  15. Wu D, Li BL, Zhao Q, Liu Q, Wang D, He B, Wei Z, Leong DT, Wang G, Qian H (2020) Assembling defined DNA nanostructure with nitrogen-enriched carbon dots for theranostic cancer applications. Small 16(19):1906975

    Article  CAS  Google Scholar 

  16. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 54(6348):56–58

    Article  Google Scholar 

  17. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckministerfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  18. Nimibofa A, Newton EA, Cyprain AY, Donbebe W (2018) Fullerenes: synthesis and applications. J Mater Sci 7:22–33

    Google Scholar 

  19. Kazemzadeh H, Mozafari M (2019) Fullerene-based delivery systems. Drug Discovery Today 24(3):898–905

    Article  CAS  PubMed  Google Scholar 

  20. Ashtami J, Anju S, Mohanan PV (2019) Conformity of dextran-coated fullerene C70 with L929 fibroblast cells. Colloids Surf B 184:110530

    Article  CAS  Google Scholar 

  21. Kilinç E (2016) Fullerene C60 functionalized γ-Fe2O3 magnetic nanoparticle: synthesis, characterization, and biomedical applications. Artificial Cells, Nanomedicine and Biotechnology 44(1):298–304

    Article  PubMed  Google Scholar 

  22. Sumio I, Toshinari I (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    Article  Google Scholar 

  23. Oberlin M, Endo A, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32(3):335–349

    Article  CAS  Google Scholar 

  24. Anzar N, Hasan R, Tyagi M, Yadav N, Narang J (2020) Carbon nanotube—a review on synthesis, properties and plethora of applications in the field of biomedical science. Sensors International 1:100003

    Article  Google Scholar 

  25. Jeon I, Xiang R, Shawky A, Matsuo Y, Maruyama S (2018) Single-walled carbon nanotubes in emerging solar cells: synthesis and electrode applications. Adv Energy Mater 9(23):1801312

    Article  Google Scholar 

  26. Bati ASR, Yu L, Batmunkh M, Shapter JG (2018) Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. Nanoscale 10(47):22087–22139

    Article  CAS  PubMed  Google Scholar 

  27. Liu J, Wang C, Wang X, Wang X, Cheng L, Li Y (2014) Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv Func Mater 25(3):384–392

    Article  Google Scholar 

  28. Hou L, Yang X, Ren J, Wang Y, Zhang H, Feng Q, Shi Y, Shan X, Yuan Y, Zhang Z (2016) A novel redox-sensitive system based on single-walled carbon nanotubes for chemo-photothermal therapy and magnetic resonance imaging. Int J Nanomed 607

    Google Scholar 

  29. Zhang M, Wang W, Cui Y, Chu X, Sun B, Zhou N (2018) Magnetofluorescent Fe3O4 carbon quantum dots coated single-walled carbon nanotubes as dual-modal targeted imaging and chemo photodynamic photothermal triple-modal therapeutic agents. Chem Eng J 338:526–538

    Article  CAS  Google Scholar 

  30. Rathinavel S, Priyadharshini K, Panda D (2021) A review on carbon nanotube: an overview of synthesis, properties, functionalization, characterization, and the application. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 268:115095

    Article  CAS  Google Scholar 

  31. Gupta N, Gupta SM, Sharma SK (2019) Carbon nanotubes: synthesis, properties and engineering applications. Carbon Letters 29:419–447

    Article  Google Scholar 

  32. Ibrahim KS (2013) Carbon nanotubes-properties and applications: a review. Carbon Letters 14(3):131–144

    Article  Google Scholar 

  33. Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9(1):393

    Article  PubMed  PubMed Central  Google Scholar 

  34. Samadishadlou M, Farshbaf M, Annabi N, Kavetskyy T, Khalilov R, Saghfi S, Akbarzadeh A, Mousavi S (2017) Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine. Artificial Cells, Nanomedicine and Biotechnology 46(7):1314–1330

    Article  PubMed  Google Scholar 

  35. Dalal M, Greneche JM, Satpati B, Ghzaiel TB, Mazaleyrat F, Ningthoujam RS, Chakrabarti PK (2017) Microwave absorption and the magnetic hyperthermia applications of Li0.3Zn0.3Co0.1Fe2.3O4 nanoparticles in multiwalled carbon nanotube matrix. ACS Applied Materials and Interfaces 9(46):40831–40845

    Google Scholar 

  36. Tiwaree M, Seal P, Borah JP, Paul N (2019) Functionalization of carbon nanotubes and its nanocomposites for hyperthermia studies. Materials Today: Proceedings 18:1317–1323

    CAS  Google Scholar 

  37. Bhuyan M, Alam S, Uddin M, Islam M, Bipasha FA, Hossain SS (2016) Synthesis of graphene. International. Nano Lett 6(2):65–83

    Article  CAS  Google Scholar 

  38. Lee HC, Liu WW, Chai SP, Mohamed AR, Aziz A, Khe CS, Hidayah NMS, Hashim U (2017) Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv 7(26):15644–15693

    Article  CAS  Google Scholar 

  39. Chen YW, Su YL, Hu SH, Chen SY (2016) Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv Drug Deliv Rev 105:190–204

    Article  CAS  PubMed  Google Scholar 

  40. Yang K, Feng L, Liu Z (2016) Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Adv Drug Deliv Rev 105:228–241

    Article  CAS  PubMed  Google Scholar 

  41. Alegret N, Criado A, Prato M (2017) Recent advances of graphene-based hybrids with magnetic nanoparticles for biomedical applications. Curr Med Chem 24(5):529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu J, Dong J, Zhang T, Peng Q (2018) Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release 286:64–73

    Article  CAS  PubMed  Google Scholar 

  43. Tadyszak K, Wychowaniec JK, Litowczenko J (2018) Biomedical applications of graphene-based structures. Nanomaterials 8(11):944

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259

    Google Scholar 

  45. Alam SN, Sharma N, Kumar L (2017) Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)*. Graphene 06(01):1–18

    Article  CAS  Google Scholar 

  46. Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsaure. Ber Dtsch Chem Ges 31(2):1481–1487

    Article  CAS  Google Scholar 

  47. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  48. Krishanu G, Kishor S (2018) Biomedical applications of graphene nanomaterials and beyond. ACS Biomater Sci Eng 4(8):2653–2703

    Article  Google Scholar 

  49. Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114(14):6426–6432

    Article  Google Scholar 

  50. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980

    Article  CAS  PubMed  Google Scholar 

  51. Jaworski S, Grodzik M, Winnicka A (2015) In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma. Int J Nanomed 1585–1596

    Google Scholar 

  52. Li D, Deng M, Yu Z, Liu W, Zhou G, Li W, Wang X, Yang DP, Zhang W (2018) Biocompatible and stable GO-coated Fe3O4 nanocomposite: a robust drug delivery carrier for simultaneous tumor MR imaging and targeted therapy. ACS Biomater Sci Eng 4(6):2143–2154

    Article  CAS  PubMed  Google Scholar 

  53. Ricci R, Leite NCS, da-Silva NS, Pacheco-Soares C, Canevari RA, Marciano FR, Webster TJ, Lobo AO (2017) Graphene oxide nanoribbons as nanomaterial for bone regeneration: effects on cytotoxicity, gene expression and bactericidal effect. Materials Science and Engineering C 78:341–348

    Google Scholar 

  54. Lin C, Chen Y, Huang P (2020) Preparation of multifunctional dopamine-coated zerovalent iron/reduced graphene oxide for targeted phototheragnosis in breast cancer. Nanomaterials 10(10):1957

    Google Scholar 

  55. Lee BJ, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094

    Article  CAS  Google Scholar 

  56. Thambiliyagodage C, Mirihana S, Gunathilaka H (2019) Porous carbon materials in biomedical applications. Biomedical Journal of Scientific and Technical Research 22(4):16905–16907

    Article  Google Scholar 

  57. Zhao Q, Lin Y, Han N, Li X, Geng H, Wang X, Wang S (2017) Mesoporous carbon nanomaterials in drug delivery and biomedical application. Drug Delivery 24(2):94–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zbair M, Ahsaine HA, Anfar Z (2018) Porous carbon by microwave assisted pyrolysis: an effective and low-cost adsorbent for sulfamethoxazole adsorption and optimization using response surface methodology. J Clean Prod 202:571–581

    Article  CAS  Google Scholar 

  59. Tiwari A, Kumar R, Shefi O, Randhawa JK (2020) Fluorescent mantle carbon coated core-shell SPIONs for neuroengineering applications. ACS Appl Bio Mater 3(7):4665–4673

    Article  CAS  PubMed  Google Scholar 

  60. Wu F, Sun B, Chu X (2019) Hyaluronic acid-modified porous carbon-coated Fe3O4 nanoparticles for magnetic resonance imaging-guided photothermal/chemotherapy of tumors. Langmuir 35(40):13135–13144

    Article  CAS  PubMed  Google Scholar 

  61. Zhao L, Xu YH, Qin H, Abe S, Akasaka T, Chano T, Watari F, Kimura T, Komatsu N, Chen X (2014) Platinum on nanodiamond: a promising prodrug conjugated with stealth polyglycerol, targeting peptide and acid-responsive antitumor drug. Adv Func Mater 24:5348–5357

    Article  CAS  Google Scholar 

  62. Wen Y, Xu M, Liu X, Jin X, Kang J, Xu D, Sang H, Gao P, Chen X, Zhao L (2019) Magnetofluorescent nanohybrid comprising polyglycerol grafted carbon dots and iron oxides: colloidal synthesis and applications in cellular imaging and magnetically enhanced drug delivery. Colloids Surf B 173:842–850

    Article  CAS  Google Scholar 

  63. Guan Y, Yang Y, Wang X, Yuan H, Yang Y, Li N, Ni C (2021) Multifunctional Fe3O4@SiO2-CDs magnetic fluorescent nanoparticles as effective carrier of gambogic acid for inhibiting VX2 tumor cells. J Mol Liq 327:114783

    Article  CAS  Google Scholar 

  64. Borhan A, Herea DD, Gherca D (2020) Flash-cooling assisted sol-gel self-ignited synthesis of magnetic carbon dots-based heterostructure with antitumor properties. Mater Sci Eng C 117:111288

    Article  CAS  Google Scholar 

  65. Li L, Wang F, Shao Z (2018) Biomass-based magnetic fluorescent nanoparticles: one-step scalable synthesis, application as drug carriers and mechanism study. Carbohyd Polym 184:277–287

    Article  CAS  Google Scholar 

  66. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744

    Article  CAS  Google Scholar 

  67. Ding C, Zhu A, Tian Y (2014) Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res 47(1):20–30

    Article  CAS  PubMed  Google Scholar 

  68. Yao H, Long X, Cao L, Zeng M, Zhao W, Du B, Zhou J (2016) Multifunctional ferritin nanocages for bimodal imaging and targeted delivery of doxorubicin into cancer cells. RSC Adv 6(111):109322–109333

    Article  CAS  Google Scholar 

  69. Liu Z, Tabakman SM, Chen Z, Dai H (2009) Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc 4(9):1372–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Al Faraj A, Shaik AP, Shaik AS (2014) Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. Int J Nanomed 10:157–168

    Article  Google Scholar 

  71. Al Faraj A, Shaik AS, Al Sayed B (2015) Preferential magnetic targeting of carbon nanotubes to cancer sites: noninvasive tracking using MRI in a murine breast cancer model. Nanomedicine 10(6):931–948

    Article  CAS  PubMed  Google Scholar 

  72. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2:47–52

    Article  CAS  PubMed  Google Scholar 

  73. Ge X, Fu M, Niu X, Kong X (2020) Atomic layer deposition of γ-Fe2O3 nanoparticles on multi-wall carbon nanotubes for magnetic drug delivery and liver cancer treatment. Ceram Int 46(17):26557–26563

    Article  CAS  Google Scholar 

  74. Seyfoori A, Sarfarazijami S, Seyyed Ebrahimi SA (2019) pH-responsive carbon nanotube-based hybrid nanogels as the smart anticancer drug carrier. Artificial Cells, Nanomedicine and Biotechnology 47(1):1437–1443

    Article  CAS  PubMed  Google Scholar 

  75. Seal P, Paul N, Babu PD, Borah JP (2019) Hyperthermic efficacy of suitably functionalized MWCNT decorated with MnFe2O4 nanocomposite. Appl Phys A Mater Sci Process 125(5):290

    Article  CAS  Google Scholar 

  76. Zuo X, Wu C, Zhang W, Gao W (2018) Magnetic carbon nanotubes for self-regulating temperature hyperthermia. RSC Adv 8(22):11997–12003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wan H, Li C, Gao Z, Liu Z, Dong L, Yang Q, Xiong C (2020) Facile and efficient synthesis of magnetic fluorescent nanocomposites based on carbon nanotubes. Ceram Int 46(7):8928–8934

    Article  CAS  Google Scholar 

  78. Park JK, Jung J, Subramaniam P, Shah BP, Kim C, Lee JK, Cho JH, Lee C, Lee KB (2011) Graphite-coated magnetic nanoparticles as multimodal imaging probes and cooperative therapeutic agents for tumor cells. Small 7(12):1647–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tiwari A, Verma NC, Turkkan S, Debnath A, Singh A, Draeger G, Nandi CK, Randhawa JK (2020) Graphitic carbon coated magnetite nanoparticles for dual mode imaging and hyperthermia. ACS Applied Nano Materials 3(1):896–904

    Article  CAS  Google Scholar 

  80. Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J (2010) Graphene oxide sheets at interfaces. J Am Chem Soc 132(23):8180–8186

    Article  CAS  PubMed  Google Scholar 

  81. Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 173:75–88

    Article  CAS  PubMed  Google Scholar 

  82. Karthika V, AlSalhi MS, Devanesan S, Gopinath K, Arumugam A, Govindarajan M (2020) Chitosan overlaid Fe3O4/rGO nanocomposite for targeted drug delivery, imaging, and biomedical applications. Sci Rep 10(1):18912

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gonzalez-Rodriguez R, Campbell E, Naumov A (2019) Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. PLoS ONE 14(6):e0217072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Abdollahi Z, Taheri-Kafrani A, Bahrani SA, Kajani AA (2019) PEGAylated graphene oxide/superparamagnetic nanocomposite as a high-efficiency loading nanocarrier for controlled delivery of methotrexate. J Biotechnol 298:88–97

    Article  CAS  PubMed  Google Scholar 

  85. Rodrigues RO, Baldi G, Doumett S (2018) Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery. Mater Sci Eng C 93:206–217

    Article  CAS  Google Scholar 

  86. Sugumaran PJ, Liu XL, Herng TS, Peng E, Ding J (2019) GO-functionalized large magnetic iron oxide nanoparticles with enhanced colloidal stability and hyperthermia performance. ACS Appl Mater Interfaces 11(25):22703–22713

    Article  CAS  PubMed  Google Scholar 

  87. Peng E, Choo ESG, Chandrasekharan P, Yang CT, Ding J, Chuang KH, Xue JM (2012) Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications. Small 8(23):3620–3630

    Article  CAS  PubMed  Google Scholar 

  88. Gupta J, Prakash A, Jaiswal MK, Agarrwal A, Bahadur D (2018) Superparamagnetic iron oxide-reduced graphene oxide nanohybrid-a vehicle for targeted drug delivery and hyperthermia treatment of cancer. J Magn Magn Mater 448:332–338

    Article  CAS  Google Scholar 

  89. Hatamie S, Shih PJ, Soufi Zomorod M, Heravi P, Ahadian MM, Hatami N (2020) Hyperthermia response of PEGylated magnetic graphene nanocomposites for heating applications and accelerate antibacterial activity using magnetic fluid hyperthermia. Appl Phys A Mater Sci Process 126(4):1–10

    Article  Google Scholar 

  90. Wu F, Zhang M, Lu H (2018) Triple stimuli-responsive magnetic hollow porous carbon-based nanodrug delivery system for magnetic resonance imaging-guided synergistic photothermal/chemotherapy of cancer. ACS Appl Mater Interfaces 10(26):21939–21949

    Article  CAS  PubMed  Google Scholar 

  91. He M, Zhou J, Chen J, Zheng F, Wang D, Shi R, Guo Z, Wang H, Chen Q (2015) Fe3O4@carbon@zeolitic imidazolate framework-8 nanoparticles as multifunctional pH-responsive drug delivery vehicles for tumor therapy in vivo. J Mater Chem B 3(46):9033–9042

    Article  CAS  PubMed  Google Scholar 

  92. Yang Z, Wang L, Liu Y, Liu S, Tang D, Meng L, Cui B (2020) ZnO capped flower-like porous carbon-Fe3O4 composite as carrier for bi-triggered drug delivery. Mater Sci Eng, C 107:110256

    Article  CAS  Google Scholar 

  93. Bommana MM, Raut S (2018) Brain targeting of payload using mild magnetic field: site specific delivery. Nanostructures for the Engineering of Cells, Tissues and Organs: From Design to Applications 167–185

    Google Scholar 

  94. Wu F, Sun B, Chu X, Zhang Q, She Z, Song S, Zhou N, Zhang J, Yi X, Wu D, Wang J (2019) Hyaluronic acid-modified porous carbon-coated Fe3O4 nanoparticles for magnetic resonance imaging-guided photothermal/chemotherapy of tumors. Langmuir 35(40):13135–13144

    Article  CAS  PubMed  Google Scholar 

  95. Hepel M (2020) Magnetic nanoparticles for nanomedicine. Magnetochemistry 6(1):3

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Vijayakanth or V. Vinodhini .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vijayakanth, V., Vinodhini, V., Chintagumpala, K. (2023). Biocompatible Carbon-Coated Magnetic Nanoparticles for Biomedical Applications. In: Grace, A.N., Sonar, P., Bhardwaj, P., Chakravorty, A. (eds) Handbook of Porous Carbon Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7188-4_34

Download citation

Publish with us

Policies and ethics