Skip to main content

Synthesis and Fabrication of Advanced Carbon Nanostructures

  • Chapter
  • First Online:
Handbook of Porous Carbon Materials

Abstract

Porous carbon materials play a crucial role in materials chemistry owing to their unique physiochemical properties. Usual synthesis methods endow carbon materials with random morphologies and hence consequent in poor material utilization. To enhance the efficiency of these materials for different applications, advanced synthesis methods are required that are capable of producing application specific properties. Nanostructuring is one of the advanced synthesis methods which have control over the surface area, porous structure, and many other properties thus enabling full material utilization. Further, molecular designing of porous carbon materials regulates electrical conductivity, band gap, and also interaction with different functional groups. Nanostructures are synthesized either by a bottom-up or top-down approach. The bottom-up approach relies on the attractive forces between the building blocks whereas in the top-down approach, large materials are deconstructed to give nanostructures. However, these approaches comprise various synthesis methods; nevertheless, the chapter will be confined to some recent non-traditional synthesis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Casco ME, Martínez-Escandell M, Gadea-Ramos E, Kaneko K, Silvestre-Albero J, Rodríguez-Reinoso F (2015) High-pressure methane storage in porous materials: are carbon materials in the pole position? Chem Mater 27:959–964

    Article  CAS  Google Scholar 

  2. Sahu V, Shekhar S, Sharma RK, Singh G (2015) Ultrahigh performance supercapacitor from lacey reduced graphene oxide nanoribbons. ACS Appl Mater Interfaces 7(5):3110–3116

    Article  CAS  PubMed  Google Scholar 

  3. Borchardt L, Zhu QL, Casco ME, Berger R, Zhuang X, Kaskel S, Feng X, Xu Q (2017) Toward a molecular design of porous carbon materials. Mater Today 20:592–610

    Article  CAS  Google Scholar 

  4. Joshi A, Sahu V, Singh G, Sharma RK (2019) Performance enhancement of a supercapacitor negative electrode based on loofah sponge derived oxygen rich carbon through encapsulation of MoO3 nanoflowers. Sustainable Energy Fuels 3:1248–1257

    Article  CAS  Google Scholar 

  5. Bellah MM, Chistensen SM, Iqbal SM (2012) Nanostructures for medical diagnostics. J Nanomater

    Google Scholar 

  6. Yu HD, Regulacio MD, Ye E, Han MY (2013) Chemical routes to top-down nanofabrication. Chem Soc Rev 42(14):6006–6018

    Article  CAS  PubMed  Google Scholar 

  7. Wan MM, Sun XD, Li YY, Zhou J, Wang Y, Zhu JH (2016) Facilely fabricating multifunctional N-enriched carbon. ACS Appl Mater Interfaces 8:1252–1263

    Article  CAS  PubMed  Google Scholar 

  8. Sato H, Matsuda R, Sugimoto K, Takata M, Kitagawa S (2010) Photoactivation of a nanoporous crystal for on-demand guest trapping and conversion. Nat Mater 9:661–666

    Article  CAS  PubMed  Google Scholar 

  9. Yang Z, Ren J, Zhang Z, Chen X, Guan G, Qiu L, Zhang Y, Peng H (2015) Recent advancement of nanostructured carbon for energy applications. Chem Rev 115(11):5159–5223

    Article  CAS  PubMed  Google Scholar 

  10. Sun Q, Zhang R, Qiu J, Liu R, Xu W (2018) On-surface synthesis of carbon nanostructures. Adv Mater 30:1705630

    Article  Google Scholar 

  11. Hoseisel TN, Schrettl S, Szilluweit R, Frauenrath H (2010) Nanostructured carbonaceous materials from molecular precursors. Angew Chem Int Ed 49:6496–6515

    Article  Google Scholar 

  12. Kwiatkowski M, Policicchio A, Seredych M, Bandosz TJ (2016) Evaluation of CO2 interactions with S-doped nanoporous carbon and its composites with a reduced GO: effect of surface features on an apparent physical adsorption mechanism. Carbon 98:250–258

    Article  CAS  Google Scholar 

  13. Joshi A, Singh G, Sharma RK (2020) Engineering multiple defects for active sites exposure towards enhancement of Ni3S2 charge storage characteristics. Chem Eng J 384:123364

    Article  CAS  Google Scholar 

  14. Joshi A, Lalwani S, Singh G, Sharma RK (2019) Highly oxygen deficient, bimodal mesoporous silica-based supercapacitor with enhanced charge storage characteristics. ElectrochimActa 297:705–714

    Article  CAS  Google Scholar 

  15. Tomar AK, Joshi A, Singh G, Sharma RK (2020) Triple perovskite oxide as an advanced pseudocapacitive material: multifarious element approach with an ordered structure. J Mater Chem A 8:24013–24023

    Article  CAS  Google Scholar 

  16. Joshi A, Tomar AK, Singh G, Sharma RK (2021) Engineering oxygen defects in the boron nanosheet for stabilizing complex bonding structure: an approach for high-performance supercapacitor. Chem Eng J 407:127122

    Article  CAS  Google Scholar 

  17. Wei Q, Xiong F, Tan S, Huang L, Lan EH, Dunn B, Mai L (2017) Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv Mater 29:1602300

    Article  Google Scholar 

  18. Sun L, Yuan G, Gao L, Yang J, Chhowalla M, Gharahcheshmeh MH, Liu Z (2021) Chemical vapour deposition. Nat Rev Methods Primers 1(5)

    Google Scholar 

  19. Faisal AD, Aljubouri AA (2016) Synthesis and production of carbon nanospheres using noncatalytic CVD method. Int J Adv Mater Res 2(5):86–91

    CAS  Google Scholar 

  20. Che G, Lakshmi BB, Martin CR, Ruoff RS, Fisher ER (1998) Chemical vapor deposition-based synthesis of carbon nanotubes and nanofibers using a template method. Chem Mater 10:260–267

    Article  CAS  Google Scholar 

  21. Sourice J, Quinsac A, Leconte Y, Sublemontier O, Porcher W, Haon C, Bordes A, Vito ED, Boulineau A, Larbi SJS, Herlin-Boime N, Reynaud C (2015) One-step synthesis of Si@C nanoparticles by laser pyrolysis: high-capacity anode material for lithium-ion batteries. ACS Appl Mater Inter 7:6637–6644

    Article  CAS  Google Scholar 

  22. Davis JHJ (2004) Task-specific ionic liquids. Chem Lett 33(9):1072–1077

    Article  CAS  Google Scholar 

  23. Lee JS, Wang X, Luo H, Baker GA, Dai S (2009) Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J Am Chem Soc 131(13):4596–4597

    Article  CAS  PubMed  Google Scholar 

  24. Fulvio PF, Lee JS, Mayes RT, Wang X, Mahurin SM, Dai S (2011) Boron and nitrogen-rich carbons from ionic liquid precursors with tailorable surface properties. PhysChemChemPhys 13:13486–13491

    CAS  Google Scholar 

  25. Gutierrez MC, Rubio F, del Monte F (2010) Resorcinol-formaldehyde polycondensation in deep eutectic solvents for the preparation of carbons and carbon-carbon nanotube composites. Chem Mater 22:2711–2719

    Article  CAS  Google Scholar 

  26. Diercks CS, Yaghi OM (2017) The atom, the molecule, and the covalent organic framework. Science 355:eaal1585

    Google Scholar 

  27. Sahabudeen H, Qi H, Glatz BA, Tranca D, Dong R, Hou Y, Zhang T, Kuttner C, Lehnert T, Seifert G, Kaiser U, Fery A, Zheng Z, Feng X (2016) Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat Commun 7:13461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chou SY, Krauss PR, Renstrom PJ (1996) Imprint lithography with 25-nanometer resolution. Science 272:85–87

    Article  CAS  Google Scholar 

  29. Barcelo S, Li Z (2016) Nanoimprint lithography for nanodevice fabrication. Nano Converg Korea Nano Technol Res Soc 3(1):21

    Google Scholar 

  30. Traub MC, Longsine W, Truskett VN (2016) Advances in nanoimprint lithography. Annu Rev Chem Biomol Eng 7(1):583–604

    Article  PubMed  Google Scholar 

  31. Hsu KH, Schultz PL, Ferreira PM, Fang NX (2007) Electrochemical nanoimprinting with solid-state superionic stamps. Nano Lett 7(2):446–451

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Zhang L, Han L, Tian ZW, Tian ZQ, Zhan D (2017) Electrochemical nanoimprint lithography: when nanoimprint lithography meets metal assisted chemical etching. Nanoscale 9:7476–7482

    Article  CAS  PubMed  Google Scholar 

  33. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444

    Article  PubMed  Google Scholar 

  34. Zhu QL, Xu Q (2014) Metal-organic framework composites. Chem Soc Rev 43(16):5468–5512

    Article  CAS  PubMed  Google Scholar 

  35. Liu B, Shioyama H, Akita T, Xu Q (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130(16):5390–5391

    Article  CAS  PubMed  Google Scholar 

  36. Xia W, Mahmood A, Zou R, Xu Q (2015) Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8:1837–1866

    Article  CAS  Google Scholar 

  37. Shen K, Chen X, Chen J, Li Y (2016) Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal 6(9):5887–5903

    Article  CAS  Google Scholar 

  38. Wang H, Zhu QL, Zou R, Xu Q (2017) Metal-organic frameworks for energy applications. Chem 2(1):52–80

    Google Scholar 

  39. Jiang HL, Liu B, Lan YQ, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q (2011) From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J Am Chem Soc 133(31):11854–11857

    Article  CAS  PubMed  Google Scholar 

  40. Li JS, Li SL, Tang YJ, Li K, Zhou L, Kong N, Lan YQ, Bao JC, Dai ZH (2014) Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction. Sci Rep 4:5130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Presser V, Heon M, Gogotsi Y (2011) Carbide-derived carbons—from porous networks to nanotubes and graphene. Adv Funct Mater 21(5):810–833

    Article  CAS  Google Scholar 

  42. Roy R, Ravichandran D, Badzian A, Breval E (1996) Attempted hydrothermal synthesis of diamond by hydrolysis of b-SiC powder. Diam Relat Mater 5(9):973–976

    Article  CAS  Google Scholar 

  43. Hutchins O (1918) US Patent 1271713

    Google Scholar 

  44. Batisse N, Guerin K, Dubois M, Hamwi A, Spinelle L, Tomasella E (2010) Fluorination of silicon carbide thin films using pure F2 gas or XeF2. Thin Solid Films 518:6746

    Article  CAS  Google Scholar 

  45. Chen L, Behlau G, Gogotsi Y, McNallan MJ (2003) Carbothermal synthesis of boron nitride coatings on silicon carbide. J Am Ceram Soc 86(11):1830–1837

    Article  CAS  Google Scholar 

  46. Ersoy DA, McNallan MJ, Gogotsi YG (2001) Carbon coatings produced by high temperature chlorination of silicon carbide ceramics. Mater Res Innov 5:55–62

    Article  CAS  Google Scholar 

  47. Cambaz ZG, Yushin GN, Gogotsi Y, Vyshnyakova KL, Pereselentseva LN (2006) Formation of carbide-derived carbon on β-silicon carbide whiskers. J Am Ceram Soc 89:509

    Article  CAS  Google Scholar 

  48. Rose M, Kockrick E, Senkovska I, Kaskel S (2010) High surface area carbide-derived carbon fibers produced by electrospinning of polycarbosilane precursors. Carbon 48(2):403–407

    Google Scholar 

  49. Yeon SH, Reddington P, Gogotsi Y, Fischer JE, Vakifahmetoglu C, Colombo P (2010) Carbide-derived-carbons with hierarchical porosity from a preceramic polymer. Carbon 48:201–210

    Article  CAS  Google Scholar 

  50. Cambaz ZG, Yushin G, Osswald S, Mochalin V, Gogotsi Y (2008) Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon 46:841–849

    Article  CAS  Google Scholar 

  51. Palmer JC, Llobet A, Yeon SH, Fischer JE, Shi Y, Gogotsi Y, Gubbins KE (2010) Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics. Carbon 48:1116–1123

    Article  CAS  Google Scholar 

  52. Gogotsi Y, Yoshimura M (1994) Formation of carbon films on carbides under hydrothermal conditions. Nature 367:628–630

    Article  CAS  Google Scholar 

  53. Gogotsi Y, Yoshimura M (1994) Water effects on corrosion behavior of structural ceramics. MRS Bull 19(10):39–45

    Article  CAS  Google Scholar 

  54. Jacobson NS, Gogotsi YG, Yoshimura M (1995) Thermodynamic and experimental study of carbon formation on carbides under hydrothermal conditions. J Mater Chem 5:595–601

    Article  CAS  Google Scholar 

  55. Zhang H, Presser V, Berthold C, Nickel KG, Wang X, Raisch C, Chasse T, He L, Zhou Y (2010) Mechanisms and kinetics of the hydrothermal oxidation of bulk titanium silicon carbide. J Am Ceramic Soc 93(4):1148–1155

    Article  CAS  Google Scholar 

  56. Gogotsi Y, Libera JA, Naguib N (2002) In situ chemical experiments in carbon nanotubes. Chem Phys Lett 365(3–4):354–360

    Article  CAS  Google Scholar 

  57. Kusunoki M, Rokkaku M, Suzuki T (1997) Epitaxial carbon nanotube film self-organized by sublimation decomposition of silicon carbide. Appl Phys Lett 71:2620

    Article  CAS  Google Scholar 

  58. Emtsev K, Bostwick A, Horn K, Jobst J, Kellogg G, Ley L, McChensney J, Ohta T, Reshanov S, Röhrl J, Rotengerg E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207

    Article  CAS  PubMed  Google Scholar 

  59. Van Bommel AJ, Crombeen JE, Van Tooren A (1975) LEED and Auger electron observations of the SiC(0001) surface. Surf Sci 48(2):463–472

    Article  Google Scholar 

  60. Rollings E, Gweon GH, Zhou SY, Mun BS, Mc-Chesney JL, Hussain BS, Fedorov AV, First PN, de Heer WA, Lanzara A (2006) Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J Phys Chem Solids 67(9–10):2172–2177

    Article  CAS  Google Scholar 

  61. Virojanadara C, Syväjarvi M, Yakimova R, Johansson LI, Zakharov AA, Balasubramanian T (2008) Homogeneous large-area graphene layer growth on 6H-SiC(0001). Phys Rev B 78:245403

    Article  Google Scholar 

  62. Miller JR, Outlaw RA, Holloway BC (2010) Graphene double-layer capacitor with ac line-filtering performance. Science 329:1637–1639

    Article  CAS  PubMed  Google Scholar 

  63. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Article  CAS  PubMed  Google Scholar 

  64. Kumar D, Tomar AK, Singal S, Singh S, Sharma RK (2020) Ammonium decavanadatenanodots/reduced graphene oxide nanoribbon as “inorganic-organic” hybrid electrode for high potential aqueous symmetric supercapacitors. J Power Sources 462:228173

    Article  CAS  Google Scholar 

  65. Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal Process. ACS Nano 4:4324–4330

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support received from Science and Engineering Research Board Grant No. EMR/2016/002846. Financial support received from the Institute of Eminence is gratefully acknowledged. Deepak Kumar is grateful to CSIR for the financial support through SRF fellowship (09/045(1632)/2019-EMR-1). Akanksha Joshi thankfully acknowledges the financial support through SRF fellowship (09/045(1422)/2016-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gurmeet Singh or Raj Kishore Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tomar, A.K., Kumar, D., Joshi, A., Singh, G., Sharma, R.K. (2023). Synthesis and Fabrication of Advanced Carbon Nanostructures. In: Grace, A.N., Sonar, P., Bhardwaj, P., Chakravorty, A. (eds) Handbook of Porous Carbon Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7188-4_1

Download citation

Publish with us

Policies and ethics