Skip to main content

Overview of Lightweight Metallic Materials

  • Chapter
  • First Online:
Advances in Processing of Lightweight Metal Alloys and Composites

Abstract

Lightweight materials are widely employed in a variety of industries that require high performance with less weight, including biomedical, automobile, aviation, power generation, batteries, electronic devices, and the marine industries (Samuel Ratna Kumar PS, Jyothi S, John Alexis S in In micro and nano technologies, corrosion protection at the nanoscale. Elsevier, pp 47–61, 2020; Ali et al. in J Alloys Compd 619:639–651, 2015; Shahadat M, Teng TT, Rafatullah M, Arshad M in Coll Surf B: Biointerf 126:121–137, 2015). Several manufacturers are constantly looking for new materials that have the technological and economic capacity to compete successfully on the marketplace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Samuel Ratna Kumar PS, Jyothi S, John Alexis S (2020) Corrosion behavior of aluminum alloy reinforced with MWCNTs. In: Rajendran S, Nguyen TANH, Kakooei S, Yeganeh M, Li Y (eds) In micro and nano technologies, corrosion protection at the nanoscale. Elsevier, pp 47–61, ISBN: 9780128193594. https://doi.org/10.1016/B978-0-12-819359-4.00004-0

  2. Ali Y, Qiu D, Jiang B, Pan FS, Zhang MX (2015) Current research progress in grain refinement of cast magnesium alloys: a review article. J Alloys Compd 619:639–651. https://doi.org/10.1016/j.jallcom.2014.09.061

    Article  CAS  Google Scholar 

  3. Shahadat M, Teng TT, Rafatullah M, Arshad M (2015) Titanium-based nanocomposite materials: a review of recent advances and perspectives. Coll Surf B: Biointerf 126:121–137. https://doi.org/10.1016/j.colsurfb.2014.11.049

  4. Reitz W. Review of: “metallic materials for lightweight applications”. In: Wells MGH, Kula EB, Beatty JH (eds) Materials and manufacturing processes, vol 11(2), pp 315–316. https://doi.org/10.1080/10426919608947484

  5. Haber D (2015) Lightweight materials for automotive applications: a review. SAE Technical Paper. 2015-6-0219. https://doi.org/10.4271/2015-36-0219

  6. Sivasankaran S (ed) Aluminium alloys—recent trends in processing, characterization, mechanical behavior and applications. London, United Kingdom, IntechOpen. Available from: https://www.intechopen.com/books/6071. https://doi.org/10.5772/68032

  7. Song JF, She J, Chen D, Pan FS (2020) Latest research advances on magnesium and magnesium alloys worldwide. J Magnes Alloys 8:1–41. https://doi.org/10.1016/j.jma.2020.02.003

    Article  CAS  Google Scholar 

  8. Sudhakar KV, Wood E (2016) Superplastic grade titanium alloy: comparative evaluation of mechanical properties, microstructure, and fracture behavior. J Mater 2016:1–7.https://doi.org/10.1155/2016/2309232

  9. Peters M, Leyens C (2009) Materials science and engineering. In: Aerospace and space materials, vol III

    Google Scholar 

  10. Samuel Ratna Kumar PS, Mashinini P, John Alexis S (2022) Metal matrix nanocomposites, nanotechnology in the automotive industry. Elsevier, ISBN: 9780323905244. https://doi.org/10.1016/B978-0-323-90524-4.00010-4

  11. Saravana Mohan M, Samuel Ratna Kumar PS (2021) Influence of CNT-based nanocomposites in dynamic performance of redundant articulated robot. Robotica 39:153–164. https://doi.org/10.1017/S0263574720000272

  12. Loukil N (2021) Alloying elements of magnesium alloys: a literature review. In: Tański T, Jarka P (eds) Magnesium alloys structure and properties [internet]. IntechOpen, London. [cited 2022 Apr 26]. Available from: https://www.intechopen.com/chapters/75298. https://doi.org/10.5772/intechopen.96232

  13. Li SB, Yang XY, Hou JT, Du WB (2020) A review on thermal conductivity of magnesium and its alloys. J Magnes Alloys 8:78–90. https://doi.org/10.1016/j.jma.2019.08.002

    Article  CAS  Google Scholar 

  14. Ogawa A, Niikura M, Ouchi C, Minikawa K, Yamada M (1996) Development and applications of titanium alloy SP-700 with high formability. J Test Eval 24(2):100–109. https://doi.org/10.1520/JTE12683J

    Article  CAS  Google Scholar 

  15. Welsch G, Boyer R, Collings EW (1993) Ti-3Al-8V-6Cr4Mo-4Zr (beta C). In: Materials properties handbook: titanium alloys, p 797, ASM International

    Google Scholar 

  16. Kumar PSSR, Mashinini PM (2021) Dry sliding wear behaviour of AA7075—Al2SiO5 layered nanoparticle material at different temperature condition. SILICON 13:4259–4274. https://doi.org/10.1007/s12633-020-00728-3

    Article  CAS  Google Scholar 

  17. Davis JR (1994) Aluminum and aluminum alloys. ASM speciality handbook, ASM international, Materials Park, OH, USA

    Google Scholar 

  18. Vasudevan AK (1989) Doherty RD aluminum alloys—contemporary research and applications. Academic Press Inc., Cambridge, MA, USA

    Google Scholar 

  19. Rambabu P, Eswara Prasad N, Kutumbarao VV, Wanhill RJH. Aluminium alloys for aerospace applications. In: Eswara Prasad N, Wanhill RJH (eds) Aerospace materials and material technologies. Indian Institute of Metals Series. https://doi.org/10.1007/978-981-10-2134-3_2

  20. Aamir M, Giasin K, Tolouei-Rad M, Vafadar A (2020) A review: drilling performance and hole quality of aluminium alloys for aerospace applications. J Mater Res Technol 9(6):12484–12500. https://doi.org/10.1016/j.jmrt.2020.09.003

  21. Campbell FC (2008) Aluminum, elements of metallurgy and engineering alloys. ASM international 1:487–508. https://doi.org/10.31399/asm.tb.emea.t52240487

  22. Varshney D, Kumar K (2021) Application and use of different aluminium alloys with respect to workability, strength and welding parameter optimization. Ain Shams Eng J 12(1):1143–1152. https://doi.org/10.1016/j.asej.2020.05.013

  23. Starke EA (2014) Historical development and present status of aluminum–lithium alloys. In: Eswara Prasad N, Gokhale AA, Wanhill RJH (eds) Aluminum-lithium alloys. Butterworth-Heinemann, pp 3–26, ISBN: 9780124016989, https://doi.org/10.1016/B978-0-12-401698-9.00001-X

  24. Shand MA (2006) History of magnesia. In: The chemistry and technology of magnesia. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp 1–4

    Google Scholar 

  25. Dobrzanski LA (2019) The importance of magnesium and its alloys in modern technology and methods of shaping their structure and properties. In: Magnesium and its alloys. CRC Press, Boca Raton, FL, USA, pp 1–28

    Google Scholar 

  26. Song GL, Atrens A (1999) Corrosion mechanisms of magnesium alloys. Adv Eng Mater 1:11–33. https://doi.org/10.1002/(SICI)1527-2648(199909)

    Article  CAS  Google Scholar 

  27. Moosbrugger C (2017) Engineering properties of magnesium alloys. ASM Int 1–10, ISBN: 978-1-62708-143-6

    Google Scholar 

  28. Ram Prabhu T, Vedantam S, Singh V. Aluminium alloys for aerospace applications. In: Eswara Prasad N, Wanhill RJH (eds) Aerospace materials and material technologies. Indian Institute of Metals Series. https://doi.org/10.1007/978-981-10-2134-3_2

  29. Kainer KU (ed). Magnesium alloys and their applications. WILEY-VCH Verlag GmbH, Weinheim. ISBN: 3-527-30282-4

    Google Scholar 

  30. Dong J, Lin T, Shao H, Wang H, Wang X, Song K, Li Q (2022) Advances in degradation behavior of biomedical magnesium alloys: a review. J Alloys Compounds 908:164600. https://doi.org/10.1016/j.jallcom.2022.164600

  31. Bach FW, Schaper M, Jaschik C (2003) Influence of lithium on HCP magnesium alloys. Mater Sci Forum 419–422:1037–1042

    Article  Google Scholar 

  32. Lütjering G, Williams JC (2007) Titanium: engineering materials and processes, 2nd edn. Springer, Berlin, Germany

    Google Scholar 

  33. Zarkades A, Larson FR (1970) Elasticity of titanium sheet alloys. In: The science, technology and application of titanium. Pergamon Press, Oxford, UK, pp 933–941

    Google Scholar 

  34. Boyer R, Welsch G, Collings EW (eds) (1994) Materials properties handbook: titanium alloys. ASM International, Materials Park, OH, USA

    Google Scholar 

  35. Partridge PG (1967) The crystallography and deformation modes of hexagonal close-packed metals. Metall Rev 12(1):169–194

    Article  CAS  Google Scholar 

  36. Yoo HM (1981) Slip, twinning, and fracture in hexagonal-close packed metals. Metall Trans A 12A:409–418

    Article  Google Scholar 

  37. Bhattacharjee A, Saha B, Williams JC. Titanium alloys: part 1—physical metallurgy and processing. In: Eswara Prasad N, Wanhill RJH (eds) Aerospace materials and material technologies. Indian Institute of Metals Series, https://doi.org/10.1007/978-981-10-2134-3_2

  38. Boyer RR (1995) Titanium for aerospace: rationale and applications. Adv Perform Mater 2:349–368

    Article  CAS  Google Scholar 

  39. Zhao W, Wang S, Han Z, He N (2015) Cutting performance evaluation of end mills for titanium aircraft components. Procedia CIRP 35:1–7

    Article  Google Scholar 

  40. Tardelli JDC, Bolfarini C, dos Reis AC (2020) Comparative analysis of corrosion resistance between beta titanium and Ti–6Al–4V alloys: a systematic review. J Trace Element Med Biol 62:126618

    Google Scholar 

  41. Suntharavel Muthaiah VM, Indrakumar S, Suwas S, Chatterjee K (2022) Surface engineering of additively manufactured titanium alloys for enhanced clinical performance of biomedical implants: a review of recent developments. Bioprinting 25:e00180

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Samuel Ratna Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samuel Ratna Kumar, P.S., Mashinini, P.M., Vaira Vignesh, R. (2023). Overview of Lightweight Metallic Materials. In: Vignesh, R.V., Padmanaban, R., Govindaraju, M. (eds) Advances in Processing of Lightweight Metal Alloys and Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7146-4_4

Download citation

Publish with us

Policies and ethics