Skip to main content

Architecture of the Blood Vessels

  • Chapter
  • First Online:
Biology of Vascular Smooth Muscle
  • 315 Accesses

Abstract

The blood vessels are tubular structured consisting of three layers: the tunica intima, the tunica media, and the tunica adventitia. The tunica intima is the innermost layer of the vessels mainly made up of one layer of endothelial cells. With the exception that the capillaries have only the tunica intima, the arteries and veins also possess the other two layers. The tunica media, i.e., the middle layer, is constituted of smooth muscle cells, elastic and collagenous fibrils while the tunica adventitia is the outermost layer of the vessel wall consisting of dense fibroelastic tissue. The mixtures of different tissue components including smooth muscle, elastic, and collagen fibers. The diameter and thickness of the vascular wall vary among different vessel types to serve their functions. In this chapter, the architectural characteristics of the arteries, capillaries, and veins will be discussed. Furthermore, the gap junctions that form intercellular connections, and the vessels provide nutrients to vessel walls as well as some cell types of functional importance including fibroblasts, stem/progenitor cells, and perivascular adipose tissue will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalkjaer C, Mulvany MJ (2020) Structure and function of the microcirculation. In: Agabiti-Rosei E, Heagerty AM, Rizzoni D (eds) Microcirculation in cardiovascular diseases. updates in hypertension and cardiovascular protection. Springer, Cham, pp 1–14

    Google Scholar 

  • Ahmadieh S, Kim HW, Weintraub NL (2020) Potential role of perivascular adipose tissue in modulating atherosclerosis. Clin Sci (Lond) 134:3–13

    Article  CAS  Google Scholar 

  • Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  CAS  Google Scholar 

  • Blanco PJ, Müller LO, Spence JD (2017) Blood pressure gradients in cerebral arteries: a clue to pathogenesis of cerebral small vessel disease. Stroke Vasc Neurol 2:108–117

    Article  Google Scholar 

  • Boyle EC, Sedding DG, Haverich A (2017) Targeting vasa vasorum dysfunction to prevent atherosclerosis. Vasc Pharmacol 96-98:5–10

    Article  CAS  Google Scholar 

  • Boulpaep EL (2020) Arteries and veins. In: Boron WF, Boulpaep EL (eds) Boron & Boulpaep concise medical physiology E-book, Elsevier Health Sciences, pp 225–233

    Google Scholar 

  • Bunce DF II. (1974) Atlas of arterial histology. Green, St. Louis

    Google Scholar 

  • Burton AC (1954) Relation of structure to function of the tissues of the wall of blood vessels. Physiol Rev 34:619–642

    Article  CAS  Google Scholar 

  • Beyer AM, Gutterman DD (2012) Regulation of the human coronary microcirculation. J Mol Cell Cardiol 52:814–821

    Article  CAS  Google Scholar 

  • Brisset AC, Isakson BE, Kwak BR (2009) Connexins in vascular physiology and pathology. Antioxid Redox Signal 11:267–282

    Article  CAS  Google Scholar 

  • Brook WH (1977) Vasa vasorum of veins in dog and man. Angiology 28:351–360

    Article  CAS  Google Scholar 

  • Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN (2017) Role of lipids and intraplaque hypoxia in the formation of neovascularization in atherosclerosis. Ann Med 49:661–677

    Article  CAS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  Google Scholar 

  • Fenger Gron J, Mulvany MJ, Christensen KL (1997) Intestinal blood flow is controlled by both feed arteries and microcirculatory resistance vessels in freely moving rats. J Physiol 498:215–224

    Article  CAS  Google Scholar 

  • Fernández-Alfonso MS, Somoza B, Tsvetkov D, Kuczmanski A, Dashwood M, Gil-Ortega M (2017) Role of perivascular adipose tissue in health and disease. Compr Physiol 8:23–59

    Article  Google Scholar 

  • Figueroa XF, Duling BR (2009) Gap junctions in the control of vascular function. Antioxid Redox Signal 11:251–266

    Article  CAS  Google Scholar 

  • Gao Y, Chen T, Raj JU (2016) Endothelial and smooth muscle cell interactions in the pathobiology of pulmonary hypertension. Am J Respir Cell Mol Biol 54:451–460

    Article  CAS  Google Scholar 

  • Gil-Ortega M, Somoza B, Huang Y, Gollasch M, Fernández-Alfonso MS (2015) Regional differences in perivascular adipose tissue impacting vascular homeostasis. Trends Endocrinol Metab 26:367–375

    Article  CAS  Google Scholar 

  • Gloviczki P (2017) Development of anatomy of venous system. In: Gloviczki P (ed) Handbook of venous and lymphatic disorders: guidelines of the American venous forum, 4th edn. CRC Press, Boca Raton, pp 5–26

    Chapter  Google Scholar 

  • Gössl M, Malyar NM, Rosol M, Beighley PE, Ritman EL (2003a) Impact of coronary vasa vasorum functional structure on coronary vessel wall perfusion distribution. Am J Physiol Heart Circ Physiol 285:H2019–H2026

    Article  Google Scholar 

  • Gössl M, Rosol M, Malyar NM, Fitzpatrick LA, Beighley PE, Zamir M, Ritman EL (2003b) Functional anatomy and hemodynamic characteristics of vasa vasorum in the walls of porcine coronary arteries. Anat Rec A Discov Mol Cell Evol Biol 272:526–537

    Article  Google Scholar 

  • Grubb S, Cai C, Hald BO, Khennouf L, Murmu RP, Jensen AGK, Fordsmann J, Zambach S, Lauritzen M (2020) Precapillary sphincters maintain perfusion in the cerebral cortex. Nat Commun 11:395

    Article  CAS  Google Scholar 

  • Haas TL, Duling BR (1997) Morphology favors an endothelial cell pathway for longitudinal conduction within arterioles. Microvasc Res 53:113–120

    Article  CAS  Google Scholar 

  • Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60

    Article  CAS  Google Scholar 

  • Hashitani H, Mitsui R (2019) Role of pericytes in the initiation and propagation of spontaneous activity in the microvasculature. Adv Exp Med Biol 1124:329–356

    Article  CAS  Google Scholar 

  • Hildebrand S, Stümer J, Pfeifer A (2018) PVAT and its relation to brown, beige, and white adipose tissue in development and function. Front Physiol 9:70

    Article  Google Scholar 

  • Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q (2004) Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest 113:1258–1265

    Article  CAS  Google Scholar 

  • Institoris A, Gordon GR (2021) A tense relationship between capillaries and pericytes. Nat Neurosci 24:615–617

    Article  CAS  Google Scholar 

  • Jadidi M, Razian SA, Habibnezhad M, Anttila E, Kamenskiy A (2021) Mechanical, structural, and physiologic differences in human elastic and muscular arteries of different ages: comparison of the descending thoracic aorta to the superficial femoral artery. Acta Biomater 119:268–283

    Article  CAS  Google Scholar 

  • Jiang L, Sun X, Deng J, Hu Y, Xu Q (2021) Different roles of stem/progenitor cells in vascular remodeling. Antioxid Redox Signal 35:192–203

    Article  CAS  Google Scholar 

  • Jolly AJ, Lu S, Strand KA, Dubner AM, Mutryn MF, Nemenoff RA, Majesky MW, Moulton KS, Weiser-Evans MCM (2022) Heterogeneous subpopulations of adventitial progenitor cells regulate vascular homeostasis and pathological vascular remodeling. Cardiovasc Res 118:1452–1465

    Article  CAS  Google Scholar 

  • Kim HW, Shi H, Winkler MA, Lee R, Weintraub NL (2020) Perivascular adipose tissue and vascular perturbation/atherosclerosis. Arterioscler Thromb Vasc Biol 40:2569–2576

    Article  CAS  Google Scholar 

  • Kwon HM, Sangiorgi G, Ritman EL, Lerman A, McKenna C, Virmani R, Edwards WD, Holmes DR, Schwartz RS (1998) Adventitial vasa vasorum in balloon-injured coronary arteries: visualization and quantitation by a microscopic three-dimensional computed tomography technique. J Am Coll Cardiol 32:2072–2079

    Article  CAS  Google Scholar 

  • Lametschwandtner A, Minnich B, Kachlik D, Setina M, Stingl J (2004) Three-dimensional arrangement of the vasa vasorum in explanted segments of the aged human great saphenous vein: scanning electron microscopy and three-dimensional morphometry of vascular corrosion casts. Anat Rec A Discov Mol Cell Evol Biol 281:1372–1382

    Article  Google Scholar 

  • Libby P (2021) The changing landscape of atherosclerosis. Nature 592:524–533

    Article  CAS  Google Scholar 

  • Liu Y, Sun Y, Hu C, Liu J, Gao A, Han H, Chai M, Zhang J, Zhou Y, Zhao Y (2020) Perivascular adipose tissue as an indication, contributor to, and therapeutic target for atherosclerosis. Front Physiol 11:615503

    Article  Google Scholar 

  • Lu S, Jolly AJ, Strand KA, Dubner AM, Mutryn MF, Moulton KS, Nemenoff RA, Majesky MW, Weiser-Evans MC (2020) Smooth muscle-derived progenitor cell myofibroblast differentiation through KLF4 downregulation promotes arterial remodeling and fibrosis. JCI Insight 5:e139445

    Article  Google Scholar 

  • Marieb EN, Hoehn KN (2018) Human anatomy and physiology, 11th edn. Pearson, London

    Google Scholar 

  • Martinez-Lemus LA (2012) The dynamic structure of arterioles. Basic Clin Pharmacol Toxicol 110:5–11

    Article  CAS  Google Scholar 

  • Molica F, Figueroa XF, Kwak BR, Isakson BE, Gibbins JM (2018) Connexins and pannexins in vascular function and disease. Int J Mol Sci 19:1663

    Article  Google Scholar 

  • Muller JM, Davis MJ, Chilian WM (1996) Integrated regulation of pressure and flow in the coronary microcirculation. Cardiovasc Res 32:668–678

    Article  CAS  Google Scholar 

  • Mulligan-Kehoe MJ, Simons M (2014) Vasa vasorum in normal and diseased arteries. Circulation 129:2557–2566

    Article  Google Scholar 

  • Nees S, Juchem G, Weiss DR, Partsch H (2012) Pathogenesis and therapy of chronic venous disease: new insights into structure and function of the leg venous system. Phlebologie 41:246–257

    Google Scholar 

  • Nielsen MS, Axelsen LN, Sorgen PL, Verma V, Delmar M, Holstein-Rathlou N-H (2012) Gap Junctions. Compr Physiol 2:1981–2035

    Article  Google Scholar 

  • Omar A, Chatterjee TK, Tang Y, Hui DY, Weintraub NL (2014) Proinflammatory phenotype of perivascular adipocytes. Arterioscler Thromb Vasc Biol 34:1631–1636

    Article  CAS  Google Scholar 

  • Pogoda K, Kameritsch P (2019) Molecular regulation of myoendothelial gap junctions. Curr Opin Pharmacol 45:16–22

    Article  CAS  Google Scholar 

  • Pogoda K, Mannell H, Blodow S, Schneider H, Schubert KM, Qiu J, Schmidt A, Imhof A, Beck H, Tanase LI, Pfeifer A, Pohl U, Kameritsch P (2017) NO augments endothelial reactivity by reducing myoendothelial calcium signal spreading: a novel role for Cx37 (Connexin 37) and the protein tyrosine phosphatase SHP-2. Arterioscler Thromb Vasc Biol 37:2280–2290

    Article  CAS  Google Scholar 

  • Pohl U (2020) Connexins: key players in the control of vascular plasticity and function. Physiol Rev 100:525–572

    Article  CAS  Google Scholar 

  • Pugsley MK, Tabrizchi R (2000) The vascular system: an overview of structure and function. J Pharmacol Toxicol Methods 44:333–340

    Article  CAS  Google Scholar 

  • Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG (2020) Metalloproteinases and their inhibitors: potential for the development of new therapeutics. Cell 9:1313

    Article  CAS  Google Scholar 

  • Rademakers T, Douma K, Hackeng TM, Post MJ, Sluimer JC, Daemen MJ, Biessen EA, Heeneman S, van Zandvoort MA (2013) Plaque-associated vasa vasorum in aged apolipoprotein E-deficient mice exhibit proatherogenic functional features in vivo. Arterioscler Thromb Vasc Biol 33:249–256

    Article  CAS  Google Scholar 

  • Rhodin JAG (2014) Architecture of the vessel wall. In: Comprehensive Physiology. John Wiley & Sons, Hoboken, NJ, pp 1–31

    Google Scholar 

  • Rothe CF (2011) Venous system: physiology of the capacitance vessels. In: Terjung R (ed) Compr Physiol, pp 397–452

    Google Scholar 

  • Sakai T, Hosoyamada Y (2013) Are the precapillary sphincters and metarterioles universal components of the microcirculation? An historical review. J Physiol Sci 63:319–331

    Article  Google Scholar 

  • Sandow SL, Hill CE (2000) Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor-mediated responses. Circ Res 86:341–346

    Article  CAS  Google Scholar 

  • Sandow SL, Senadheera S, Bertrand PP, Murphy TV, Tare M (2012) Myoendothelial contacts, gap junctions, and microdomains: anatomical links to function? Microcirculation 19:403–415

    Article  CAS  Google Scholar 

  • Schickling BM, Miller FJ Jr (2021) Outside-in signaling by adventitial fibroblasts. Arterioscler Thromb Vasc Biol 41:711–713

    Article  CAS  Google Scholar 

  • Shepherd JT, Vanhoutte PM (1975) Veins and their control. W.B. Saunders, Philadelphia, pp 1–269

    Google Scholar 

  • Shimokawa H, Satoh K (2014) Vascular function. Arterioscler Thromb Vasc Biol 34:2359–2362

    Article  CAS  Google Scholar 

  • Smith LR, Cho S, Discher DE (2018) Stem cell differentiation is regulated by extracellular matrix mechanics. Physiology (Bethesda) 33:16–25

    Google Scholar 

  • Stenmark KR, Yeager ME, El Kasmi KC, Nozik-Grayck E, Gerasimovskaya EV, Li M, Riddle SR, Frid MG (2013) The adventitia: essential regulator of vascular wall structure and function. Annu Rev Physiol 75:23–47

    Article  CAS  Google Scholar 

  • Straub AC, Billaud M, Johnstone SR, Best AK, Yemen S, Dwyer ST, Looft-Wilson R, Lysiak JJ, Gaston B, Palmer L, Isakson BE (2011) Compartmentalized connexin 43 S-nitrosylation/denitrosylation regulates heterocellular communication in the vessel wall. Arterioscler Thromb Vasc Biol 31:399–407

    Article  CAS  Google Scholar 

  • Tanaka H, Zaima N, Kugo H, Yata T, Iida Y, Hashimoto K, Miyamoto C, Sasaki T, Sano H, Suzuki Y, Moriyama T, Shimizu H, Inuzuka K, Urano T, Unno N (2020) The role of animal models in elucidating the etiology and pathology of abdominal aortic aneurysms: development of a novel rupture mechanism model. Ann Vasc Surg 63:382–390

    Article  Google Scholar 

  • Tian GE, Zhou JT, Liu XJ, Huang YC (2019) Mechanoresponse of stem cells for vascular repair. World J Stem Cells 11:1104–1114

    Article  Google Scholar 

  • Tinajero MG, Gotlieb AI (2020) Recent developments in vascular adventitial pathobiology: the dynamic adventitia as a complex regulator of vascular disease. Am J Pathol 190:520–534

    Article  CAS  Google Scholar 

  • van der Wijk AE, VanBavel E, Bakker ENTP (2020) The cerebral microcirculation. In: Agabiti-Rosei E, Heagerty AM, Rizzoni D (eds) Microcirculation in cardiovascular diseases. updates in hypertension and cardiovascular protection. Springer, Cham. p 59–72

    Google Scholar 

  • Williams JD, Heistad DD (1996) Structure and function of vasa Vasorum. Trends Cardiovasc Med 6:53–57

    Article  CAS  Google Scholar 

  • Wolinsky H, Glagov S (1967a) A lamellar unit of aortic medial structure and function in mammals. Circ Res 20:99–111

    Article  CAS  Google Scholar 

  • Wolinsky H, Glagov S (1967b) Nature of species differences in the medial distribution of aortic vasa vasorum in mammals. Circ Res 20:409–421

    Article  CAS  Google Scholar 

  • Yu B, Chen Q, Le Bras A, Zhang L, Xu Q (2018) Vascular stem/progenitor cell migration and differentiation in atherosclerosis. Antioxid Redox Signal 29:219–235

    Article  CAS  Google Scholar 

  • Zhang C, Zeng L, Emanueli C, Xu Q (2013) Blood flow and stem cells in vascular disease. Cardiovasc Res 99:251–259

    Article  CAS  Google Scholar 

  • Zhou Y, Li H, Xia N (2021) The interplay between adipose tissue and vasculature: role of oxidative stress in obesity. Front Cardiovasc Med 8:650214

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, Y. (2022). Architecture of the Blood Vessels. In: Biology of Vascular Smooth Muscle. Springer, Singapore. https://doi.org/10.1007/978-981-19-7122-8_1

Download citation

Publish with us

Policies and ethics