Skip to main content

Design and Analysis of One-Dimensional Photonic Crystal Biosensor Device for Identification of Cancerous Cells

  • Chapter
  • First Online:
Next Generation Smart Nano-Bio-Devices

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 322))

Abstract

The present chapter highlights one-dimensional photonic crystal (1D PhC) and its vital applications. The remarkable scientific progress in PhC has been able to draw the attention of researchers for novel bio-sensing applications. With the advancement in technology, different defect-based PhCs have been successfully fabricated with extensive analysis of propagation characteristics and tested for various sensing applications like blood, gas, salinity, DNA, alcohol, liquid, food, hormones, enzymes, cells, urine, glucose, chemicals, etc. The transfer matrix method is the most suitable method to study the spectral characteristics of 1D PhC structure. The sensing principle is based on the study of alteration in the resonant mode wavelength according to the modification in the analyte refractive index. This chapter deals with the study of defect-based 1D PhC cancer cells sensor, where TMM is employed to detect basal, cervical, and breast cancer cells. In order to enhance the sensitivity, a thin graphene layer is deposited at the side wall of the defect layer. A complete optimization of geometrical parameters has been performed to envisage high performance. The 3D colormap plot is studied to clearly show the variation in the properties of the defect mode with change in the incident angle. Moreover, signal-to-noise ratio, Q-factor, resolution, and figure of merit of the sensor are measured meticulously. The noteworthy sensing performance can open an avenue to effectively detect the cancer cells in the early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong, E., Dwyer, C.O.: Artificial opal photonic crystals and inverse opal structures: fundamentals and applications from optics to energy storage. J. Mater. Chem. C 3(24), 6109–6143 (2015)

    Article  CAS  Google Scholar 

  2. Cucci, C., Tornari, V.: Photonic technologies for the safeguarding of cultural assets. In: Photonics for Safety and Security, pp. 21–45. World Scientific Press, Singapore (2014)

    Google Scholar 

  3. Shen, H., et al.: One-dimensional photonic crystals: fabrication, responsiveness and emerging applications in 3D construction. RSC Adv. 6, 4505 (2016)

    Article  CAS  Google Scholar 

  4. Yablonovitch, E.: Inhibited spontaneous emission in solid–state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  CAS  Google Scholar 

  5. John, S.: Strong localization of photons in certain in disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  CAS  Google Scholar 

  6. Ishizaki, K., Suzuki, K., Noda, S.: Fabrication of 3D photonic crystals toward arbitrary manipulation of photons in three dimensions. Photonics 3(2), 36 (2016)

    Article  Google Scholar 

  7. Panda, A., Pukhrambam, P.D.: Design and analysis of porous core photonic crystal fiber based ethylene glycol sensor operated at infrared wavelengths. J. Comput. Electron. 20, 943–957 (2021)

    Google Scholar 

  8. Pang, L., Nakagawa, W., Fainman, Y.: Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write. Appl. Opt. 42(27), 5450–5456 (2003)

    Google Scholar 

  9. Panda, A., Pukhrambam, P.D.: Photonic crystal biosensor for refractive index based cancerous cell detection. Opt. Fiber Technol. 54, 102123 (2020)

    Google Scholar 

  10. Panda, A., Pukhrambam, P.D.: Analysis of GaN-based 2D photonic crystal sensor for real-time detection of alcohols. Braz. J. Phys. 51, 481–492 (2021)

    Google Scholar 

  11. Baba, T., Mori, D., Inoshita, K., Kuroki, Y.: Light localizations in photonic crystal line defect waveguides. IEEE J. Sel. Top. Quant. Electron. 10(3), 484–491 (2004)

    Article  CAS  Google Scholar 

  12. Wellenzohn, M., et al.: Design of a photonic crystal defect waveguide biosensor operating in aqueous solutions at 1.34 µm, Proceedings 2, 1026 (2018)

    Google Scholar 

  13. Moghaddam, M.K., Fleury, R.: Slow light engineering in resonant photonic crystal line-defect waveguides. Opt. Expr. 27(18), 26229–26238 (2019)

    Google Scholar 

  14. Panda, A., Pukhrambam, P.D.: A theoretical proposal of high performance blood components biosensor based on defective 1D photonic crystal employing WS2, MoS2 and graphene. Opt. Quant. Electron. 53(357) (2021)

    Google Scholar 

  15. Panda, A., Pukhrambam, P.D., Keiser, G.: Realization of sucrose sensor using 1D photonic crystal structure vis-à-vis band gap analysis. Microsyst. Technol. 27, 833–842 (2021)

    Google Scholar 

  16. Panda, A., et al.: Research on SAD-PRD losses in semiconductor waveguide for application in photonic integrated circuits. Optik 154, 748–754 (2018)

    Article  CAS  Google Scholar 

  17. Panda, A., Pukhrambam, P.D.: Investigation of defect based 1D photonic crystal structure for real-time detection of waterborne bacteria. Phys. B Condens. Matter. 607(3), 412854 (2021)

    Google Scholar 

  18. Aly, A.H., et al.: Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. Phys. Scr. 95(3), 035510 (2020)

    Article  CAS  Google Scholar 

  19. Goyal, A., Suthar, B., Bhargava, A.: Biosensor application of one-dimensional photonic crystal for malaria diagnosis. Plasmonics 16, 59–63 (2021)

    Article  Google Scholar 

  20. Sharma, S., Kumar, A.: Design of a biosensor for the detection of dengue virus using 1D photonic crystals. Plasmonics (2021). https://doi.org/10.1007/s11468-021-01555-x

    Article  Google Scholar 

  21. Abadla, M.M., Elsayed, H.A.: Detection and sensing of hemoglobin using one-dimensional binary photonic crystals comprising a defect layer. Appl. Opt. 59(2), 418–424 (2020)

    Article  CAS  Google Scholar 

  22. Algorri, J.F., et al.: Infiltrated photonic crystal fibers for sensing applications. Sensors 18(12), 4263 (2018)

    Article  Google Scholar 

  23. Panda, A., Pukhrambam, P.D.: Design and analysis of 1D photonic crystal doped with magnetized cold plasma defect for application of single/multi-channel tunable narrowband filter. Phys. Scr. 97, 065507 (2022). https://doi.org/10.1088/1402-4896/ac6f92

  24. Aly, A.H., Mohamed, D., Mohaseb, M.A., Abd El-Gawaad, N.S., Trabelsi, Y.: Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal, RSC Adv. 10, 31765–31772 (2020)s

    Google Scholar 

  25. Panda, A., Vigneswaran, D., Pukhrambam, P.D., Ayyanar, N., Nguyen, T.K.: Design and performance analysis of reconfigurable 1D photonic crystal biosensor employing Ge2Sb2Te5 (GST) for detection of women reproductive hormones. IEEE Trans. NanoBiosci. 21(1), 21–28 (2022)

    Google Scholar 

  26. Panda, A., Pukhrambam, P.D., Wu, F., Belhadj, W.: Graphene-based 1D defective photonic crystal biosensor for real-time detection of cancer cells. Eur. Phys. J. Plus. 136, 809 (2021)

    Google Scholar 

  27. Falkovsky, L.A., Pershoguba S.S.: Optical far-infrared properties of a graphene mono layer and multilayer. Phys. Rev. B 76(15) (2007). Art. no. 153410

    Google Scholar 

  28. Mak, K.F., Shan, J., Heinz, T.F.: Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. Phys. Rev. Lett. 104, 176404 (2010)

    Article  Google Scholar 

  29. Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  CAS  Google Scholar 

  30. Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Google Scholar 

  31. Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)

    Article  CAS  Google Scholar 

  32. Stauber, T., Peres, N.M.R., Geim, A.K.: Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78(8) (2008). Art. no. 085432

    Google Scholar 

  33. Schedin, F., Geim, A., Morozov, S., Hill, E., Blake, P., Katsnelson, M., Novoselov, K.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652 (2007)

    Article  CAS  Google Scholar 

  34. Pop, E., et al.: Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012)

    Article  CAS  Google Scholar 

  35. Rahman, M. R., et al.: Electrical and chemical properties of graphene over composite materials: a technical review. Mat. Sci. Res. India 16(2) (2019)

    Google Scholar 

  36. Liao, G., et al.: Preparation properties, and applications of graphene-based hydrogels. Front. Chem. 6, 450 (2018)

    Article  CAS  Google Scholar 

  37. Nouman, W.M., Abd El-Ghany, S.E.S., Sallam, S.M., et al.: Biophotonic sensor for rapid detection of brain lesions using 1D photonic crystal. Opt. Quant. Electron. 52, 287 (2020)

    Google Scholar 

  38. Zaky, Z.A., Ahmed, A.M., Shalaby, A.S., Aly, A.H.: Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimization. Sci. Rep. 10, Art. no. 9736 (2020)

    Google Scholar 

  39. Shi, X., Zhao, Z.S., Han, Z.H.: Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity. Sens. Actuators 274, 188–193 (2018)

    Article  CAS  Google Scholar 

  40. Ahmed, A.M., Mehaney, A.: Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci Rep 9, 6973 (2019)

    Article  Google Scholar 

  41. Aly, A.H., et al.: Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv. 10, 31765–31772 (2020)

    Article  CAS  Google Scholar 

  42. Abadla, M.M., Elsayed, H.A.: Detection and sensing of hemoglobin using one-dimensional binary photonic crystals comprising a defect layer. Appl. Opt. 59(2), 418–424 (2020)

    Google Scholar 

  43. Bouzidi, A., Bria, D., Falyouni, F., Akjouj, A., Lévêque, G., Azizi, M., Berkhli, H.: A biosensor based on one dimensional photonic crystal for monitoring blood glycemia. J. Mater. Environ. Sci. 8(11), 3892–3896 (2017)

    Google Scholar 

  44. Elsayed, H.A., Mehaney, A.: Theoretical verification of photonic crystals sensor for biodiesel detection and sensing. Phys. Scr. 95, 085507 (2020)

    Google Scholar 

  45. Fu, J., Chen, W., Lv, B.: Tunable defect mode realized by graphene-based photonic crystals. Phys. Lett. A 380, 1793–1798 (2016)

    Article  CAS  Google Scholar 

  46. Fan, H.M.: Tunable plasmonic band gap and defect mode in one dimensional photonic crystal covered with graphene. J. Opt. 16 (2014). Art. no. 125005

    Google Scholar 

  47. Abd El-Aziz, O.A., Elsayed, H.A., Sayed, M.I.: One-dimensional defective photonic crystals for the sensing and detection of protein. Appl. Opt. 58(30), 8309–8315 (2019)

    Google Scholar 

  48. Katz, R., Edelson, M.: The Cancer-Fighting Kitchen: Nourishing, Big-Flavor Recipes for Cancer. Ten Speed Press, Crown Publishing Group, New York, USA (2009)

    Google Scholar 

  49. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018)

    Article  Google Scholar 

  50. Yaroslavsky, A.N., et al.: High-contrast mapping of basal cell carcinomas. Opt. Lett. 37(4), 644–646 (2012)

    Article  Google Scholar 

  51. Bijalwan, A., Singh, B.K., Rastogi, V.: Analysis of one-dimensional photonic crystal based sensor for detection of blood plasma and cancer cells. Optik 226(1), 165994 (2021)

    Google Scholar 

  52. Aly, A.H., Zaky, Z.A.: Ultra-sensitive photonic crystal cancer cells sensor with a high quality factor. Cryogenics 104, 102991 (2019)

    Article  CAS  Google Scholar 

  53. Ramanujam, N.R., Amiri, I., Taya, S.A., Olyaee, S., Udaiyakumar, R., Pandian, A.P.: Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal. Microsyst. Technol. 25, 189–196 (2019)

    Article  Google Scholar 

  54. Panda, A., Devi, P.P.: Photonic crystal biosensor for refractive index based cancerous cell detection. Opt. Fiber Technol. 54, 102123 (2020)

    Google Scholar 

  55. Ayyanar, N., Raja, G.T., Sharma, M., Kumar, D.S.: Photonic crystal fiber-based refractive index sensor for early detection of cancer. IEEE Sens. J. 18, 7093–7099 (2018)

    Article  CAS  Google Scholar 

  56. Sani, M.H., Khosroabadi, S.: A novel design and analysis of high-sensitivity biosensor based on nano-cavity for detection of blood component, diabetes, cancer and glucose concentration. IEEE Sens. J. 20(13), 7161–7168 (2020)

    Article  CAS  Google Scholar 

  57. Jabin, M.A., et al.: Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J. 11(4), 1–10 (2019)

    Article  Google Scholar 

  58. https://refractiveindex.info/?shelf=main&book=ZnSe&page=Marple

  59. https://refractiveindex.info/?shelf=main&book=MgF2&page=Dodge-o

  60. Kumar, A., Singh, P., Thapa, K.B.: Study of super absorption properties of 1D graphene and dielectric photonic crystal for novel applications. Opt. Quant. Electron. 52 (2020)

    Google Scholar 

  61. Ghasemi, F., Entezar, S.R., Razi, S.: Terahertz tunable photonic crystal optical filter containing graphene and nonlinear electro-optic polymer. Laser Phys. 29, 056201 (2019)

    Article  CAS  Google Scholar 

  62. Liang X.J., et al.: Determination of refractive index for single living cell using integrated biochip. In: Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS'05., vol. 2, pp. 1712–1715. IEEE (2005)

    Google Scholar 

  63. Sharan, P., Bharadwaj, S. M., Gudagunti, F.D., Deshmukh, P.: Design and modelling of photonic sensor for cancer cell detection. In: Impact of E-Technology on US (IMPETUS), IEEE International Conference on the, pp. 20–24. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abinash Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panda, A., Pukhrambam, P.D. (2023). Design and Analysis of One-Dimensional Photonic Crystal Biosensor Device for Identification of Cancerous Cells. In: Dutta, G., Biswas, A. (eds) Next Generation Smart Nano-Bio-Devices. Smart Innovation, Systems and Technologies, vol 322. Springer, Singapore. https://doi.org/10.1007/978-981-19-7107-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7107-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7106-8

  • Online ISBN: 978-981-19-7107-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics