Skip to main content

A Review on Numerical Simulation of Large Deformation Problems in Geotechnical Engineering

  • Conference paper
  • First Online:
Soil Dynamics, Earthquake and Computational Geotechnical Engineering (IGC 2021)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 300))

Included in the following conference series:

Abstract

In geotechnical engineering, many problems like installation of pile, prefabricated vertical drains, helical pile, and spudcan, successive landslides, soil liquefaction encounter large deformations. These large deformations can be investigated by numerical solution techniques. Due to the large deformations, the geometry of the domain keeps changing, and the mesh distortion is observed when solved using the conventional finite element (FE) analysis. Therefore, to overcome this, i.e. to account for the mesh distortion in the FE analysis, some advanced formulations like coupled Eulerian–Lagrangian (CEL), arbitrary Lagrangian–Eulerian (ALE), smoothed particle hydrodynamics (SPH), particle finite element method (PFEM), material point method (MPM), and remeshing and interpolation technique by small strain (RITSS) are used. This paper presents the review on the use of various formulations to address the large deformations problem in geotechnical engineering. The basic, usage, and applications of various finite element formulations have been critically discussed. In the paper, the static cone penetration test is also simulated using PLAXIS 2D to address the limitations of conventional FE formulations in simulating the large deformations problem. The efficacy of the advanced FE formulations in the analysis of large deformations problem in geotechnical engineering is critically reviewed. Based on this review, the need of further experimental and numerical investigations of the geotechnical large deformations problem is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al Hakeem N, Aubeny C (2021) Numerical modeling of keying of vertically installed plate anchor in sand. Ocean Eng 223:108674. https://doi.org/10.1016/j.oceaneng.2021.108674

    Article  Google Scholar 

  2. Al Kafaj KI (2013) Formulation of a dynamic material point method (MPM) for geomechanical problems. PhD thesis

    Google Scholar 

  3. Andresen L, Khoa HDV (2013) LDFE analysis of installation effects for offshore anchors and foundations. In: Installation effects in geotechnical engineering. Taylor & Francis Group London, UK

    Google Scholar 

  4. Ansari Y, Kouretzis G, Pineda J (2018) Sand-pipe interaction at fault crossings: experimental and numerical investigation. In: Proceedings of the 16th European conference on earthquake engineering, Thessaloniki, Greece, June

    Google Scholar 

  5. Arroyo M, Butlanska J, Gens A, Calvetti F, Jamiolkowski M (2011) Cone penetration tests in a virtual chamber. Geotechnique 61(6):525–531. https://doi.org/10.1680/geot.9.p.067

    Article  Google Scholar 

  6. Aubram D (2015) Development and experimental validation of an arbitrary Lagrangian–Eulerian (ALE) method for soil mechanics. Geotechnik 38(3):193–204

    Article  Google Scholar 

  7. Bakroon M, Daryaei R, Aubram D, Rackwitz F (2017) Arbitrary Lagrangian–Eulerian finite element formulations applied to geotechnical problems. In: Numerical methods in geotechnics, pp 33–44

    Google Scholar 

  8. Benson DJ (1989) An efficient, accurate and simple ALE method for nonlinear finite element programs. Comput Methods Appl Mech Eng 72(3):305–350

    Article  MATH  Google Scholar 

  9. Beuth L, Vermeer PA (2013) Large deformation analysis of cone penetration testing in undrained clay. In: International conference on installation effects in geotechnical engineering (ICIEGE), Rotterdam 1–7. Taylor and Francis Group, London. ISBN 978-1-138-00041-4

    Google Scholar 

  10. Brown HK, Burns SP, Christon MA (2002) Coupled Eulerian–Lagrangian methods for earth penetrating weapon applications. Technical Report

    Google Scholar 

  11. Bruton DA, Bolton M, Carr M, White D (2008) Pipe-soil interaction with flowlines during lateral buckling and pipeline walking—the SAFEBUCK JIP. In: Offshore technology conference, January 2008. https://doi.org/10.4043/19589-ms

  12. Carbonell JM, O Ate E, Su Rez B (2010) Modeling of ground excavation with the particle finite element method. J Eng Mech 136(4):455–463

    Google Scholar 

  13. Carbonell JM, O Ate E, Su Rez B (2013) Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method. Comput Mech 52(3):607–629

    Google Scholar 

  14. Ceccato F, Beuth L, Vermeer PA, Simonini P (2016) Two-phase material point method applied to the study of cone penetration. Comput Geotech 80:440–452. https://doi.org/10.1016/j.compgeo.2016.03.003

    Article  Google Scholar 

  15. Chavda JT, Dodagoudar GR (2021) Experimental evaluation of failure zone in sand beneath the ring footing and cutting edge of open caisson using image analysis. In: Proceedings of the Indian geotechnical conference 2019: IGC-2019, Volume I. Springer Nature, p 273

    Google Scholar 

  16. Chavda JT, Dodagoudar GR (2020) Experimental studies on circular open caisson: load-penetration response and soil flow mechanism. Int J Phys Model Geotech 1–53. https://doi.org/10.1680/jphmg.20.00050

  17. Chavda JT, Mishra S, Dodagoudar GR (2020) Experimental evaluation of ultimate bearing capacity of the cutting edge of an open caisson. Int J Phys Model Geotech 20(5):281–294. https://doi.org/10.1680/jphmg.18.00052

    Article  Google Scholar 

  18. Chen Y, Zhao W, Han J, Jia P (2019a) A CEL study of bearing capacity and failure mechanism of strip footing resting on c-φ soils. Comput Geotech 111:126–136

    Article  Google Scholar 

  19. Chen X, Zhang L, Chen L, Li X, Liu D (2019b) Slope stability analysis based on the coupled Eulerian–Lagrangian finite element method. Bull Eng Geol Env 78(6):4451–4463

    Article  Google Scholar 

  20. Chen Z, Tho KK, Leung CF, Chow YK (2013) Influence of overburden pressure and soil rigidity on uplift behavior of square plate anchor in uniform clay. Comput Geotech 52:71–81

    Article  Google Scholar 

  21. DáValos C, Cante J, Hern Ndez JA, Oliver J (2015) On the numerical modeling of granular material flows via the particle finite element method (PFEM). Int J Solids Struct 71:99–125

    Article  Google Scholar 

  22. Dijkstra J, Broere W, Heeres OM (2011) Numerical simulation of pile installation. Comput Geotech 38(5):612–622

    Article  Google Scholar 

  23. Donea J, Huerta A, Pouthot JPh, Rodriguez-Ferran A (2004) Arbitrary Lagrangian–Eulerian methods. Wiley.https://doi.org/10.1002/9781119176817.ecm2009

  24. Fallah S, Gavin K, Jalilvand S (2016) Numerical modelling of cone penetration test in clay using coupled Eulerian Lagrangian method. In: Proceedings of civil engineering research in Ireland 2016, Galway, Ireland, 29–30 August

    Google Scholar 

  25. Fan S, Bienen B, Randolph MF (2021) Effects of monopile installation on subsequent lateral response in sand. I: Pile installation. J Geotech Geoenviron Eng 147(5):04021021

    Google Scholar 

  26. Fan S, Bienen B, Randolph MF (2018) Stability and efficiency studies in the numerical simulation of cone penetration in sand. Geotech Lett 8(1):13–18. https://doi.org/10.1680/jgele.17.00105

    Article  Google Scholar 

  27. Galavi V, Beuth L, Zuada Coelho B, Tehrani FS, Holscher P, Van Tol F (2017) Numerical simulation of pile installation in saturated sand using material point method. Procedia Eng 175:72–79. https://doi.org/10.1016/j.proeng.2017.01.027

    Article  Google Scholar 

  28. Galavi V, Martinelli M, Elkadi A, Ghasemi P, Thijssen R (2019) Numerical simulation of impact driven offshore monopiles using the material point method. In: Proceedings of the XVII ECSMGE. https://doi.org/10.32075/17ECSMGE-2019-0758

  29. Gens A (2019) Hydraulic fills with special focus on liquefaction. In: Proceedings of the XVII ECSMGE 2019, Reykjavik, Island. http://hdl.handle.net/2117/179180

  30. Grabe J, Wu L (2016) Coupled Eulerian–Lagrangian simulation of the penetration and braking behaviour of ship anchors in clay. Geotechnik 39(3):168–174

    Article  Google Scholar 

  31. Gupta T, Chakraborty T, Abdel-Rahman K, Achmus M (2015) Numerical modelling of finite deformation in geotechnical engineering. In: Advances in structural engineering. Springer, New Delhi, pp 689–701

    Google Scholar 

  32. Gupta T, Chakraborty T, Abdel-Rahman K, Achmus M (2016) Large deformation finite element analysis of static cone penetration test. Indian Geotech J 46(2):115–123

    Article  Google Scholar 

  33. Hossain MS, Hu Y, Randolph MF, White DJ (2005) Limiting cavity depth for spudcan foundations penetrating clay. Geotechnique 55(9):679–690. https://doi.org/10.1680/geot.2005.55.9.679

    Article  Google Scholar 

  34. Hu P, Stanier SA, Wang D, Cassidy MJ (2016) Effect of footing shape on penetration in sand overlying clay. Int J Phys Model Geotech 16(3):119–133. https://doi.org/10.1680/jphmg.15.00013

    Article  Google Scholar 

  35. Hu P, Wang D, Stanier SA, Cassidy MJ (2015) Assessing the punch-through hazard of a spudcan on sand overlying clay. Geotechnique 65(11):883–896

    Article  Google Scholar 

  36. Hu Y, Randolph MF (1998) A practical numerical approach for large deformation problems in soil. Int J Numer Anal Meth Geomech 22(5):327–350

    Article  MATH  Google Scholar 

  37. Idelsohn SR, Onate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Meth Eng 61:964–989

    Article  MathSciNet  MATH  Google Scholar 

  38. Kardani M, Nazem M, Carter JP, Abbo AJ (2015) Efficiency of high-order elements in large-deformation problems of geomechanics. Int J Geomech 15(6):04014101

    Article  Google Scholar 

  39. Khoa HDV, Jostad HP (2016) Application of coupled Eulerian–Lagrangian method to large deformation analyses of offshore foundations and suction anchors. Int J Offshore Polar Eng 26(03):304–314

    Article  Google Scholar 

  40. Kim YH, Hossain MS, Edwards D, Wong PC (2019) Penetration response of spudcans in layered sands. Appl Ocean Res 82:236–244

    Article  Google Scholar 

  41. Kim D (2021) Large deformation finite element analyses in TBM tunnel excavation: CEL and auto-remeshing approach. Tunn Undergr Space Technol 116:104081

    Article  Google Scholar 

  42. Konkol J (2014) Numerical solutions for large deformation problems in geotechnical engineering. PhD Interdisc J 2014:49–55

    Google Scholar 

  43. Krabbenhoft K, Zhang X (2013) Particle finite element method for extreme deformation problems. In: Tectonomechanics Colloquium, Paris

    Google Scholar 

  44. Kulak RF, Bojanowski C (2011) Modeling of cone penetration test using SPH and MM-ALE approaches. In: 8th European LS-DYNA users conference, Strasbourg, May 2011

    Google Scholar 

  45. Lai F, Liu S, Deng Y, Sun Y, Wu K, Liu H (2020) Numerical investigations of the installation process of giant deep-buried circular open caissons in undrained clay. Comput Geotech 118:103322

    Article  Google Scholar 

  46. Liu H, Xu K, Zhao Y (2016) Numerical investigation on the penetration of gravity installed anchors by a coupled Eulerian–Lagrangian approach. Appl Ocean Res 60:94–108. https://doi.org/10.1016/j.apor.2016.09.002

    Article  Google Scholar 

  47. Liu M, Zhu Z (2012) Sand deformation around an uplift plate anchor. J Geotech Geoenviron Eng 138(6):728–737. https://doi.org/10.1061/(asce)gt.1943-5606.0000633

    Article  Google Scholar 

  48. Martinelli M, Galavi V (2021) Investigation of the material point method in the simulation of cone penetration tests in dry sand. Comput Geotech 130:103923

    Article  Google Scholar 

  49. Monforte L, Arroyo M, Carbonell JM, Gens A (2017) Numerical simulation of undrained insertion problems in geotechnical engineering with the particle finite element method (PFEM). Comput Geotech 82:144–156. https://doi.org/10.1016/j.compgeo.2016.08.013

    Article  Google Scholar 

  50. Nazem M, Carter JP, Airey DW (2009) Arbitrary Lagrangian–Eulerian method for dynamic analysis of geotechnical problems. Comput Geotech 36(4):549–557. https://doi.org/10.1016/j.compgeo.2008.11.001

    Article  Google Scholar 

  51. Nazem M, Sheng D, Carter JP, Sloan SW (2008) Arbitrary Lagrangian–Eulerian method for large-strain consolidation problems. Int J Numer Anal Meth Geomech 32(9):1023–1050. https://doi.org/10.1002/nag.657

    Article  MATH  Google Scholar 

  52. Onate E, Idelsohn SR, Celigueta MA, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput Methods Appl Mech Eng 197:1777–1800

    Article  MathSciNet  MATH  Google Scholar 

  53. Onate E, Idelsohn SR, Del Pin F, Aubry R (2004) The particle finite element method an overview. Int J Comput Methods 1:267–307

    Article  MATH  Google Scholar 

  54. Phuong NTV, Van Tol AF, Elkadi A, Rohe A (2015) Numerical investigation of pile installation effects in sand using material point method. Comput Geotech 73:58–71. https://doi.org/10.1016/j.compgeo.2015.11.012

    Article  Google Scholar 

  55. PLAXIS 2D tutorial manual (2020)

    Google Scholar 

  56. Pucker T, Bienen B, Henke S (2013) CPT based prediction of foundation penetration in siliceous sand. Appl Ocean Res 41:9–18

    Article  Google Scholar 

  57. Qiu G, Grabe J (2012) Numerical investigation of bearing capacity due to spudcan penetration in sand overlying clay. Can Geotech J 49(12):1393–1407

    Article  Google Scholar 

  58. Qiu G, Henke S, Grabe J (2011) Application of a coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformations. Comput Geotech 38(1):30–39

    Article  Google Scholar 

  59. Savidis SA, Aubram D, Rackwitz F (2008) Arbitrary Lagrangian–Eulerian finite element formulation for geotechnical construction processes. J Theor Appl Mech 38(1–2):165–194

    MathSciNet  Google Scholar 

  60. Ragni R, Bienen B, Stanier S, O’Loughlin C, Cassidy M (2019) Observations during suction bucket installation in sand. Int J Phys Model Geotech 20(3):1–18. https://doi.org/10.1680/jphmg.18.00071

    Article  Google Scholar 

  61. Souli MH, Benson DJ (2013) Arbitrary Lagrangian Eulerian and fluid-structure interaction: numerical simulation. Wiley

    Google Scholar 

  62. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2):179–196. https://doi.org/10.1016/0045-7825(94)90112-0

    Article  MathSciNet  MATH  Google Scholar 

  63. Tian Y, Cassidy MJ, Randolph MF, Wang D, Gaudin C (2014) A simple implementation of RITSS and its application in large deformation analysis. Comput Geotech 56:160–167

    Article  Google Scholar 

  64. Tolooiyan A, Gavin K (2011) Modelling the cone penetration test in sand using cavity expansion and arbitrary Lagrangian Eulerian finite element methods. Comput Geotech 38(4):482–490. https://doi.org/10.1016/j.compgeo.2011.02.012

    Article  Google Scholar 

  65. Ullah SN, Stanier S, Hu Y, White D (2017) Foundation punch-through in clay with sand: centrifuge modelling. Geotechnique 67(10):870–889

    Article  Google Scholar 

  66. Vanden Berg P (1994) Analysis of soil penetration. PhD thesis, Delft University Press

    Google Scholar 

  67. Wang CX, Carter JP (2002) Deep penetration of strip and circular footings into layered clays. Int J Geomech 2(2):205–232

    Article  Google Scholar 

  68. Wang D, Bienen B, Nazem M, Tian Y, Zheng J, Pucker T, Randolph MF (2015) Large deformation finite element analyses in geotechnical engineering. Comput Geotech 65:104–114

    Article  Google Scholar 

  69. Wang D, Hu Y, Randolph MF (2010) Three-dimensional large deformation finite-element analysis of plate anchors in uniform clay. J Geotech Geoenviron Eng 136(2):355–365

    Article  Google Scholar 

  70. Wang T, Zhang Y, Bao X, Wu X (2020) Mechanisms of soil plug formation of open-ended jacked pipe pile in clay. Comput Geotech 118:103334

    Article  Google Scholar 

  71. Xiao Y, Cao H, Luo G (2019) Experimental investigation of the backward erosion mechanism near the pipe tip. Acta Geotech 14(3):767–781. https://doi.org/10.1007/s11440-019-00779-w

    Article  Google Scholar 

  72. Yu L, Hu Y, Liu J, Randolph MF, Kong X (2012) Numerical study of spudcan penetration in loose sand overlying clay. Comput Geotech 46:1–12

    Article  Google Scholar 

  73. Yuan B, Xu K, Wang Y, Chen R, Luo Q (2017) Investigation of deflection of a laterally loaded pile and soil deformation using the PIV technique. Int J Geomech 17(6):04016138. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000842

    Article  Google Scholar 

  74. Yuan WH, Wang B, Zhang W, Jiang Q, Feng XT (2019) Development of an explicit smoothed particle finite element method for geotechnical applications. Comput Geotech 106:42–51

    Article  Google Scholar 

  75. Zaid M, Sadique MR (2021) A simple approximate simulation using coupled Eulerian–Lagrangian (CEL) simulation in investigating effects of internal blast in rock tunnel. Indian Geotech J 1–18. https://doi.org/10.1007/s40098-021-00511-0

  76. Zaid M, Sadique MR, Alam MM (2021) Blast analysis of tunnels in Manhattan-Schist and Quartz-Schist using coupled-Eulerian–Lagrangian method. Innovative Infrastruct Solutions 6(2):1–10. https://doi.org/10.1007/s41062-020-00446-0

    Article  Google Scholar 

  77. Zhang L, Cai Z, Wang L, Zhang R, Liu H (2018a) Coupled Eulerian–Lagrangian finite element method for simulating soil-tool interaction. Biosys Eng 175:96–105. https://doi.org/10.1016/j.biosystemseng.2018.09.003

    Article  Google Scholar 

  78. Zhang W, Yuan W, Dai B (2018b) Smoothed particle finite-element method for large-deformation problems in geomechanics. Int J Geomech 18(4):04018010

    Article  Google Scholar 

  79. Zhang X, Krabbenhoft K, Sheng D, Li W (2015a) Numerical simulation of a flow-like landslide using the particle finite element method. Comput Mech 55(1):167–177

    Article  MathSciNet  MATH  Google Scholar 

  80. Zhang X, Sheng D, Kouretzis GP, Krabbenhoft K, Sloan SW (2015b) Numerical investigation of the cylinder movement in granular matter. Phys Rev E 91(2):022204

    Article  Google Scholar 

  81. Zhang X, Krabbenhoft K, Sheng D (2014) Particle finite element analysis of the granular column collapse problem. Granular Matter 16(4):609–619

    Article  Google Scholar 

  82. Zhou H, Randolph MF (2009) Resistance of full-flow penetrometers in rate-dependent and strain-softening clay. Géotechnique 59(2):79–86

    Article  Google Scholar 

  83. Zhou H, Randolph MF (2006) Large deformation analysis of suction caisson installation in clay. Can Geotech J 43(12):1344–1357. https://doi.org/10.1139/t06-087

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kritesh Chouhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chouhan, K., Chavda, J.T. (2023). A Review on Numerical Simulation of Large Deformation Problems in Geotechnical Engineering. In: Muthukkumaran, K., Ayothiraman, R., Kolathayar, S. (eds) Soil Dynamics, Earthquake and Computational Geotechnical Engineering. IGC 2021. Lecture Notes in Civil Engineering, vol 300. Springer, Singapore. https://doi.org/10.1007/978-981-19-6998-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6998-0_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6997-3

  • Online ISBN: 978-981-19-6998-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics