Skip to main content

Stellar Evolution, SN Explosion, and Nucleosynthesis

  • Reference work entry
  • First Online:
Handbook of X-ray and Gamma-ray Astrophysics
  • 13 Accesses

Abstract

Massive stars evolve toward the catastrophic collapse of their innermost core, producing core-collapse supernova (SN) explosions as the end products. White dwarfs, formed through evolution of the less massive stars, also explode as thermonuclear SNe if certain conditions are met during the binary evolution. Inflating opportunities in transient observations now provide an abundance of data, with which we start addressing various unresolved problems in stellar evolution and SN explosion mechanisms. In this chapter, we overview the stellar evolution channels toward SNe, explosion mechanisms of different types, and explosive nucleosynthesis. We then summarize observational properties of SNe through which the natures of the progenitors and explosion mechanisms can be constrained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • G.C. Anupama, D.K. Sahu, U.K. Gurugubelli, T.P. Prabhu, N. Tominaga, M. Tanaka, K. Nomoto, MNRAS 392, 894 (2009)

    ADS  Google Scholar 

  • D. Arnett, Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present (Princeton University Press, Princeton, 1996)

    Google Scholar 

  • R. Barbon, S. Benetti, E. Cappellaro, F. Patat, M. Turatto, T. Iijima, A&AS 110, 513 (1995)

    ADS  Google Scholar 

  • M.C. Bersten, O.G. Benvenuto, K. Nomoto et al., ApJ 757, 31 (2012)

    ADS  Google Scholar 

  • H.A. Bethe, J.R. Wilson, ApJ 295, 14 (1985)

    ADS  Google Scholar 

  • L. Bildsten, K.J. Shen, N.N. Weinberg, G. Nelemans, ApJ 662, L95 (2007)

    ADS  Google Scholar 

  • R.M. Bionta, G. Blewitt, C.B. Bratton et al., Phys. Rev. Lett. 58, 1494 (1987)

    ADS  Google Scholar 

  • S.J. Boos, D.M. Townsley, K.J. Shen, S. Caldwell, B.J. Miles, ApJ 919, 126 (2021)

    ADS  Google Scholar 

  • D. Branch, M. Livio, L.R. Yungelson, F.R. Boffi, E. Baron, PASP 107, 1019 (1995)

    ADS  Google Scholar 

  • D. Branch, E. Baron, N. Hall, M. Melakayil, J. Parrent, PASP 117, 545 (2005)

    ADS  Google Scholar 

  • D. Branch, J.C. Wheeler, Supernova Explosions. Astronomy and Astrophysics Library (Springer, Berlin/Heidelberg, 2017)

    Google Scholar 

  • S.W. Bruenn, E.J. Lentz, W.R. Hix et al., ApJ 818, 123 (2016)

    ADS  Google Scholar 

  • J. Burke, D.A. Howell, D.J. Sand et al., preprint, arXiv:2207.07681 (2022)

    Google Scholar 

  • A. Burrows, D. Vartanyan, Nature 589, 29 (2021)

    ADS  Google Scholar 

  • Y. Cao, M.M. Kasliwal, I. Arcavi et al., ApJ 775, L7 (2013)

    ADS  Google Scholar 

  • R.A. Chevalier, ApJ 258, 790 (1982)

    ADS  Google Scholar 

  • R.A. Chevalier, ApJ 259, 302 (1982)

    ADS  Google Scholar 

  • R.A. Chevalier, C. Fransson, ApJ 651, 381 (2006)

    ADS  Google Scholar 

  • R.A. Chevalier, C. Fransson, in Handbook of Supernovae, 875 (Springer, Cham, 2017)

    Google Scholar 

  • D.D. Clayton, Principles of Stellar Evolution and Nucleosynthesis (University of Chicago Press, 1984)

    Google Scholar 

  • A. Clocchiatti, N.B. Suntzeff, R. Covarrubias, P. Candia, AJ 141, 163 (2011)

    ADS  Google Scholar 

  • S.A. Colgate, R.H. White, ApJ 143, 626 (1966)

    ADS  Google Scholar 

  • K. De, M.M. Kasliwal, A. Polin et al., ApJ 873, L18 (2019)

    ADS  Google Scholar 

  • L. Dessart, D.J. Hillier, R. Waldman, E. Livne, MNRAS 433, 1745 (2013)

    ADS  Google Scholar 

  • B. Dilday, D.A. Howell, S.B. Cenko et al., Science 337, 942 (2012)

    ADS  Google Scholar 

  • M.R. Drout, R. Chornock, A.M. Soderberg et al., ApJ 794, 23 (2014)

    ADS  Google Scholar 

  • A.V. Filippenko, ARA&A 35, 309 (1997)

    ADS  Google Scholar 

  • M. Fink, F.K. Röpke, W. Hillebrandt, I.R. Seitenzahl, S.A. Sim, M. Kromer, A&A 514, A53 (2010)

    ADS  Google Scholar 

  • G. Folatelli, M.C. Bersten, H. Kuncarayakti, O.G. Benvenuto, K. Maeda, K. Nomoto, ApJ 811, 147 (2015)

    ADS  Google Scholar 

  • G. Folatelli, S.D. Van Dyk, H. Kuncarayakti et al., ApJ 825, L22 (2016)

    ADS  Google Scholar 

  • F. Förster, T.J. Moriya, J.C. Maureira et al., Nat. Astron. 3, 107 (2019)

    ADS  Google Scholar 

  • J. Fuller, MNRAS 470, 1642 (2017)

    ADS  Google Scholar 

  • C.L. Fryer, Stellar Collapse. Astrophysics and Space Science Library, vol. 302 (Kluwer Academic Publishers, 2004)

    Google Scholar 

  • T.J. Galama, P.M. Vreeswijk, J. van Paradijs et al., Nature 395, 670 (1998)

    ADS  Google Scholar 

  • A. Gal-Yam, D.C. Leonard, Nature 458, 865 (2009)

    ADS  Google Scholar 

  • A. Gal-Yam, Science 337, 927 (2012)

    ADS  Google Scholar 

  • A. Gal-Yam, I. Arcavi, E.O. Ofek et al., Nature 509, 471 (2014)

    ADS  Google Scholar 

  • A. Gal-Yam, R. Bruch, S. Schulze et al., Nature 601, 201 (2022)

    ADS  Google Scholar 

  • J. Greiner, P.A. Mazzali, D.A. Kann et al., Nature 523, 189 (2015)

    ADS  Google Scholar 

  • I. Hachisu, M. Kato, K. Nomoto, ApJ 470, 97 (1996)

    ADS  Google Scholar 

  • I. Hachisu, M. Kato, ApJ 558, 323 (2001)

    ADS  Google Scholar 

  • M. Hamuy, P.A. Pinto, J. Maza et al., ApJ 558, 615 (2001)

    ADS  Google Scholar 

  • M. Hamuy, M.M. Phillips, N.B. Suntzeff et al., Nature 424, 651 (2003)

    ADS  Google Scholar 

  • A. Heger, C.L. Fryer, S.E. Woosley, N. Langer, D.H. Hartmann, ApJ 591, 288 (2003)

    ADS  Google Scholar 

  • W. Hillebrandt, J.C. Niemeyer, ARA&A 38, 191 (2000)

    ADS  Google Scholar 

  • K. Hirata, T. Kajita, M. Koshiba et al., Phys. Rev. Lett. 58, 1490 (1987)

    ADS  Google Scholar 

  • A.Y.Q. Ho, D.A. Perley, A. Gal-Yam et al., preprint (arXiv:2105.08811) (2021)

    Google Scholar 

  • A. Horesh, I. Sfaradi, M. Ergon et al., ApJ 903, 132 (2020)

    ADS  Google Scholar 

  • G. Hosseinzadeh, I. Arcavi, S. Valenti et al., ApJ 836, 158 (2017)

    ADS  Google Scholar 

  • E.Y. Hsiao, A. Conley, D.A. Howell et al., ApJ 663, 1187 (2007)

    ADS  Google Scholar 

  • R. Iaconi, K. Maeda, O. De Marco, T. Nozawa, T. Reichardt, MNRAS 489, 3334 (2019)

    ADS  Google Scholar 

  • I. Iben Jr., A.V. Tutukov, ApJ 284, 719 (1984)

    ADS  Google Scholar 

  • K. Iwamoto, P.A. Mazzali, K. Nomoto et al., Nature 395, 672 (1998)

    ADS  Google Scholar 

  • K. Iwamoto, F. Brachwitz, K. Nomoto, N. Kishimoto, H. Umeda, W.R. Hix, F.-K. Thielemann, ApJS 125, 439 (1999)

    ADS  Google Scholar 

  • H.-T. Janka, Ann. Rev. Nucl. Part. Sci. 62, 407 (2012)

    ADS  Google Scholar 

  • A. Jerkstrand, K. Maeda, K.S. Kawabata, Science 367, 415 (2020)

    ADS  Google Scholar 

  • S.W. Jha, in Handbook of Supernovae, 375 (Springer, Cham, 2017)

    Google Scholar 

  • J. Jiang, M. Doi, K. Maeda et al., Nature 550, 80 (2017)

    ADS  Google Scholar 

  • D. Kasen, F.K. Röpke, S.E. Woosley, Nature 460, 869 (2009)

    ADS  Google Scholar 

  • D. Kasen, ApJ 708, 1025 (2010)

    ADS  Google Scholar 

  • D. Kasen, L. Bildsten, ApJ 717, 245 (2010)

    ADS  Google Scholar 

  • A.M. Khokhlov, A&A 245, 114 (1991)

    ADS  Google Scholar 

  • C.D. Kilpatrick, M.R. Drout, K. Auchettl et al., MNRAS 504, 2073 (2021)

    ADS  Google Scholar 

  • R. Kippenhahn, A. Weigert, A. Weiss, Stellar Structure and Evolution. Astronomy and Astrophysics Library, 2nd edn. (Springer, Berlin/Heidelberg, 2012)

    Google Scholar 

  • K. Kotake, K. Sato, K. Takahashi, Rep. Progress Phys. 69, 971 (2006)

    ADS  Google Scholar 

  • A. Kovetz, O. Yaron, D. Prialnik, MNRAS. A new, efficient stellar evolution code for calculating complete evolutionary tracks, Oxford University Press, 395, 1857 (2009)

    Google Scholar 

  • M. Kromer, M. Fink, V. Stanishev et al., MNRAS 429, 2287 (2013)

    ADS  Google Scholar 

  • N. Langer, ARA&A 50, 107 (2012)

    ADS  Google Scholar 

  • E. Laplace, S. Justham, M. Renzo, Y. Götberg, R. Farmer, D. Vartanyan, S.E. de Mink, A&A 656, A58 (2021)

    ADS  Google Scholar 

  • D.C. Leonard, A.V. Filippenko, E.L. Gates, PASP 114, 35 (2002)

    ADS  Google Scholar 

  • M. Liebendörfer, A. Mezzacappa, F.-K. Thielemann, O.E. Messer, W.R. Hix, S.W. Bruenn, Phys. Rev. D 63, 103004 (2001)

    ADS  Google Scholar 

  • M. Limongi, A. Chieffi, ApJ 592, 404 (2003)

    ADS  Google Scholar 

  • M. Livio, P.A. Mazzali, Phys. Rep. 736, 1 (2018)

    ADS  MathSciNet  Google Scholar 

  • E. Livne, ApJ 354, 53 (1990)

    ADS  Google Scholar 

  • J.D. Lyman, D. Bersier, P.A. James, P.A. Mazzali, J.J. Eldridge, M. Fraser, E. Pian, MNRAS 457, 328 (2016)

    ADS  Google Scholar 

  • A.I. MacFadyen, S.E. Woosley, ApJ 524, 262 (1999)

    ADS  Google Scholar 

  • K. Maeda, T. Nakamura, K. Nomoto, P.A. Mazzali, F. Patat, I. Hachisu, ApJ 565, 405 (2002)

    ADS  Google Scholar 

  • K. Maeda, K. Nomoto, ApJ 598, 1163 (2003)

    ADS  Google Scholar 

  • K. Maeda, M. Tanaka, K. Nomoto et al., ApJ 666, 1069 (2007)

    ADS  Google Scholar 

  • K. Maeda, N. Tominaga, MNRAS 394, 1317 (2009)

    ADS  Google Scholar 

  • K. Maeda, F.K. Röpke, M. Fink, W. Hillebrandt, C. Travaglio, F.-K. Thielemann, ApJ 712, 624 (2010)

    ADS  Google Scholar 

  • K. Maeda, S. Benetti, M. Stritzinger et al., Nature 466, 82 (2010)

    ADS  Google Scholar 

  • K. Maeda, Y. Terada, D. Kasen et al., ApJ 760, 54 (2012)

    ADS  Google Scholar 

  • K. Maeda, ApJ 758, 81 (2012)

    ADS  Google Scholar 

  • K. Maeda, S. Katsuda, A. Bambda, Y. Terada, Y. Fukazawa, ApJ 785, 95 (2014)

    ADS  Google Scholar 

  • K. Maeda, Y. Terada, Int. J. Modern Phys. D 25, 1630024 (2016)

    ADS  Google Scholar 

  • K. Maeda, P. Chandra, T. Matsuoka et al., ApJ 918, 34 (2021)

    ADS  Google Scholar 

  • K. Maeda, T.J. Moriya, ApJ 927, 25 (2022)

    ADS  Google Scholar 

  • D. Maoz, F. Mannucci, G. Nelemans, ARA&A 52, 107 (2014)

    ADS  Google Scholar 

  • R. Margutti, B.D. Metzger, R. Chornock et al., ApJ 872, 18 (2019)

    ADS  Google Scholar 

  • T. Matsuoka, K. Maeda, S.-H. Lee, H. Yasuda, ApJ 885, 41 (2019)

    ADS  Google Scholar 

  • C.D. Matzner, C.F. McKee, ApJ 510, 379 (1999)

    ADS  Google Scholar 

  • A. Menon, A. Heger, MNRAS 469, 4649 (2017)

    ADS  Google Scholar 

  • B.D. Metzger, D. Giannios, T.A. Thompson, N. Bucciantini, E. Quataert, MNRAS 413, 2031 (2011)

    ADS  Google Scholar 

  • A. Mezzacappa, Ann. Rev. Nucl. Part. Sci. 55, 467 (2005)

    ADS  Google Scholar 

  • T.J. Moriya, K. Maeda, F. Taddia, J. Sollerman, S.I. Blinnikov, E.I. Sorokina, MNRAS 435, 1520 (2013)

    ADS  Google Scholar 

  • T.J. Moriya, M.V. Pruzhinskaya, M. Ergon, S.I. Blinnikov, MNRAS 455, 423 (2016)

    ADS  Google Scholar 

  • V. Morozova, A.L. Piro, M. Renzo et al., ApJ 814, 63 (2015)

    ADS  Google Scholar 

  • V. Morozova, A.L. Piro, S. Valenti, ApJ 838, 28 (2017)

    ADS  Google Scholar 

  • T. Morris, P. Podsiadlowski, Science 315, 1103 (2007)

    ADS  Google Scholar 

  • K. Murase, A. Franckowiak, K. Maeda, R. Margutti, J.F. Beacom, ApJ 874, 80 (2019)

    ADS  Google Scholar 

  • M. Nicholl, E. Berger, R. Margutti et al., ApJ 828, L18 (2016)

    ADS  Google Scholar 

  • J.C. Niemeyer, S.E. Woosley, ApJ 475, 740 (1997)

    ADS  Google Scholar 

  • K. Nomoto, ApJ 253, 798 (1982)

    ADS  Google Scholar 

  • K. Nomoto, ApJ 277, 791 (1984)

    ADS  Google Scholar 

  • K. Nomoto, F.-K. Thielemann, K. Yokoi, ApJ 286, 644 (1984)

    ADS  Google Scholar 

  • K. Nomoto, K. Iwamoto, T. Suzuki, Phys. Rep. 256, 173 (1995)

    ADS  Google Scholar 

  • R. Ouchi, K. Maeda, ApJ 840, 90 (2017)

    ADS  Google Scholar 

  • R. Ouchi, K. Maeda, ApJ 877, 92 (2019)

    ADS  Google Scholar 

  • B. Paczynski, Structure and evolution of close binary systems, in Proceedings of IAU Symposium, vol. 73, ed. by P. Eggleton, S. Mitton, J. Whelan (1976), p. 75

    Google Scholar 

  • B. PaczyÅ„ski, ApJ 494, L45 (1998)

    ADS  Google Scholar 

  • R. Pakmor, M. Kromer, F.K. Röpke, S.A. Sim, A.J. Ruiter, W. Hillebrandt, Nature 463, 61 (2010)

    ADS  Google Scholar 

  • R. Pakmor, M. Kromer, S. Taubenberger, V. Springel, ApJ 770, L8 (2013)

    ADS  Google Scholar 

  • A. Pastorello, S.J. Smartt, S. Mattila et al., Nature 447, 829 (2007)

    ADS  Google Scholar 

  • F. Patat, E. Cappellaro, J. Danziger, ApJ 555, 900 (2001)

    ADS  Google Scholar 

  • R. Pereira, R.C. Thomas, G. Aldering et al., A&A 554, 27 (2013)

    Google Scholar 

  • D.A. Perley, P.A. Mazzali, L. Yan et al., MNRAS 484, 1031 (2019)

    ADS  Google Scholar 

  • K.A. Postnov, L.R. Yungelson, Liv. Rev. Relat. 17, 3 (2014)

    Google Scholar 

  • Y.-Z. Qian, S.E. Woosley, ApJ 471, 331 (1996)

    ADS  Google Scholar 

  • I. Rabinak, E. Waxman, ApJ 728, 63 (2011)

    ADS  Google Scholar 

  • T. Rauscher, A. Heger, R.D. Hoffman, S.E. Woosley, ApJ 576, 323 (2002)

    ADS  Google Scholar 

  • M.W. Richmond, R.R. Treffers, A.V. Filippenko et al., AJ 107, 1022 (1994)

    ADS  Google Scholar 

  • F.K. Röpke, W. Hillebrandt, W. Schmidt, J.C. Niemeyer, S.I. Blinnikov, P.A. Mazzali, ApJ 668, 1132 (2007)

    ADS  Google Scholar 

  • F.K. Röpke, S.E. Woosley, W. Hillebrandt, ApJ 660, 1344 (2007)

    ADS  Google Scholar 

  • H. Saio, K. Nomoto, A&A 150, L21 (1985)

    ADS  Google Scholar 

  • H. Sana, S.E. de Mink, A. de Koter et al., Science 337, 444 (2012)

    ADS  Google Scholar 

  • M. Sasaki, L. Ducci, A&A 546, 80 (2012)

    ADS  Google Scholar 

  • T. Sato, K. Maeda, S. Nagataki et al., Nature 592, 537 (2021)

    ADS  Google Scholar 

  • R. Sawada, K. Maeda, ApJ 886, 47 (2019)

    ADS  Google Scholar 

  • J. Schwab, ApJ 906, 53 (2021)

    ADS  Google Scholar 

  • I.R. Seitenzahl, F. Ciaraldi-Schoolmann, F.K. Röpke et al., MNRAS 429, 1156 (2013)

    ADS  Google Scholar 

  • K.J. Shen, L. Bildsten, MNRAS 699, 1365 (2009)

    Google Scholar 

  • K.J. Shen, D. Kasen, B.J. Miles, D.M. Townsley, ApJ 854, 52 (2018)

    ADS  Google Scholar 

  • S.J. Smartt, ARA&A 47, 63 (2009)

    ADS  Google Scholar 

  • S.J. Smartt, PASA 32, 16 (2015)

    ADS  Google Scholar 

  • N. Smith, W. Li, R.J. Foley et al., ApJ 666, 1116 (2007)

    ADS  Google Scholar 

  • N. Smith, in Handbook of Supernovae, 403 (Springer, Cham, 2017)

    Google Scholar 

  • N. Soker, MNRAS 450, 1333 (2015)

    ADS  Google Scholar 

  • W.M. Sparks, T.P. Stecher, ApJ 188, 149 (1974)

    ADS  Google Scholar 

  • S. Srivastav, G.C. Anupama, D.K. Sahu, MNRAS 445, 1932 (2014)

    ADS  Google Scholar 

  • M.D. Stritzinger, F. Taddia, S. Holmbo et al., A&A 634, A21 (2020)

    ADS  Google Scholar 

  • K. Sumiyoshi, S. Yamada, H. Suzuki, H. Shen, S. Chiba, H. Toki, ApJ 629, 922 (2005)

    ADS  Google Scholar 

  • Y. Suwa, T. Yoshida, M. Shibata, H. Umeda, K. Takahashi, MNRAS. Neutrino-driven explosions of ultra-stripped Type Ic supernovae generating binary neutron stars, Oxford University Press 454, 3073 (2015)

    Google Scholar 

  • A. Suzuki, K. Maeda, ApJ 908, 217 (2021)

    ADS  Google Scholar 

  • A. Tanikawa, K. Nomoto, N. Nakasato, K. Maeda, ApJ 885, 103 (2019)

    ADS  Google Scholar 

  • S. Taubenberger, in Handbook of Supernovae, 317 (Springer, Cham, 2017)

    Google Scholar 

  • F.-K. Thielemann, K. Nomoto, M. Hashimoto, ApJ 460, 408 (1996)

    ADS  Google Scholar 

  • K. Uno, K. Maeda, ApJ 897, 156 (2020)

    ADS  Google Scholar 

  • S. Valenti, N. Elias-Rosa, S. Taubenberger et al., ApJ 673, L155 (2008)

    ADS  Google Scholar 

  • S. Valenti, D. Sand, M. Stritzinger et al., MNRAS 448, 2608 (2015)

    ADS  Google Scholar 

  • J.T. van Loon, M.-R.L. Cioni, A.A. Zijlstra, C. Loup, A&A 438, 273 (2005)

    ADS  Google Scholar 

  • J.S. Vink, A. de Koter, H.J.G.L.M. Lamers, A&A 369, 574 (2001)

    Google Scholar 

  • S. Wanajo, B. Müller, H.-T. Janka, A. Heger, ApJ 852, 40 (2018)

    ADS  Google Scholar 

  • B. Wang, X. Meng, X. Chen, Z. Han, MNRAS 395, 847 (2009)

    ADS  Google Scholar 

  • B. Wang, Z. Han, New Astron. Rev. 56, 122 (2012)

    ADS  Google Scholar 

  • R.F. Webbink, ApJ 277, 355 (1984)

    ADS  Google Scholar 

  • J. Whelan, I. Iben Jr., ApJ 186, 1007 (1973)

    ADS  Google Scholar 

  • S.E. Woosley, T.A. Weaver, ApJ 423, 371 (1994)

    ADS  Google Scholar 

  • S.E. Woosley, T.A. Weaver, ApJS 101, 181 (1995)

    ADS  Google Scholar 

  • S.E. Woosley, J.S. Bloom, ARA&A 44, 507 (2006)

    ADS  Google Scholar 

  • H. Yamaguchi, C. Badenes, A.R. Foster et al., ApJ 801, L31 (2015)

    ADS  Google Scholar 

  • O. Yaron, A. Gal-Yam, PASP 124, 668 (2012)

    ADS  Google Scholar 

  • O. Yaron, D.A. Perley, A. Gal-Yam et al., Nat. Phys. 13, 510 (2017)

    Google Scholar 

  • S.-C. Yoon, N. Langer, A&A 443, 643 (2005)

    ADS  Google Scholar 

  • S.-C. Yoon, S.E. Woosley, N. Langer, ApJ 725, 940 (2010)

    ADS  Google Scholar 

  • T. Yoshida, H. Umeda, K. Nomoto, ApJ 672, 1043 (2008)

    ADS  Google Scholar 

  • B. Zhang, P. Mészáros, ApJ 552, L35 (2001)

    ADS  Google Scholar 

  • T. Zhang, X. Wang, C. Wu et al., AJ 144, 131 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

K.M. thanks Avinash Singh, Anjasha Gangopadhyay, and Kohki Uno for their assistance to produce Figs. 10 and 11. K.M. acknowledges support from the Japan Society for the Promotion of Science (JSPS) KAKENHI grant JP18H05223 and JP20H00174. Some data presented in this contribution are obtained from WISeREP (https://www.wiserep.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Maeda, K. (2024). Stellar Evolution, SN Explosion, and Nucleosynthesis. In: Bambi, C., Santangelo, A. (eds) Handbook of X-ray and Gamma-ray Astrophysics. Springer, Singapore. https://doi.org/10.1007/978-981-19-6960-7_85

Download citation

Publish with us

Policies and ethics