Skip to main content

CubeSats for Gamma-Ray Astronomy

  • Reference work entry
  • First Online:
Handbook of X-ray and Gamma-ray Astrophysics
  • 47 Accesses

Abstract

After many years of flying in space primarily for educational purposes, CubeSats ā€“ tiny satellites with form factors corresponding to arrangements of ā€œ1Uā€ units, or cubes, each 10 cm on a side ā€“ have come into their own as valuable platforms for technology advancement and scientific investigations. CubeSats offer comparatively rapid, low-cost access to space for payloads that can be built, tested, and operated by relatively small teams, with substantial contributions from students and early career researchers. Continuing advances in compact, low-power detectors, readout electronics, and flight computers have now enabled X-ray and gamma-ray sensing payloads that can fit within the constraints of CubeSat missions, permitting in-orbit demonstrations of new techniques and innovative high-energy astronomy observations. Gamma-ray-sensing CubeSats are certain to make an important contribution in the new era of multi-messenger, time-domain astronomy by detecting and localizing bright transients such as gamma-ray bursts, solar flares, and terrestrial gamma-ray flashes; however, other astrophysical science areas requiring long observations in a low-background environment, including gamma-ray polarimetry, studies of nuclear lines, and measurement of diffuse backgrounds, will likely benefit as well. We present the primary benefits of CubeSats for high-energy astronomy, highlight the scientific areas currently or soon to be studied, and review the missions that are currently operating, under development, or proposed. A rich portfolio of CubeSats for gamma-ray astronomy already exists, and the potential for a broad range of creative and scientifically productive missions in the near future is very high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • B. Abbott et al., Gravitational waves and gammaā€“rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. 848, L13 (2017)

    Google ScholarĀ 

  • M. Ajello et al., The evolution of swift/BAT blazars and the origin of the MeV background. Astrophys. J. 699, 603 (2009)

    Google ScholarĀ 

  • A. Almazrouei et al., A complete mission concept design and analysis of the student-led cubesat project: light-1. Aerospace 8, 247 (2021)

    Google ScholarĀ 

  • F. Arneodo, A. di Giovanni A, P. Marpu, A review of requirements for gamma radiation detection in space using CubeSats. Appl. Sci. 11, 2659 (2021)

    Google ScholarĀ 

  • J.-L. Atteia et al., 3U Transat: a swarm of CubeSats to survey the high-energy transient sky. SPIE Montreal (2022)

    Google ScholarĀ 

  • J. Beechert et al., Calibrations of the compton spectrometer and imager. Nucl. Inst. Methods Phys. Res. A 1031, 166510, pp. 15, (2022)

    Google ScholarĀ 

  • E. Berger, Short-duration gamma-ray bursts. Ann. Rev. Astron. Astrophys. 52, 43ā€“105 (2019)

    Google ScholarĀ 

  • E. Bissaldi et al., Photodetectors for gammaā€“ray astronomy, in Handbook of X-Ray and Gammaā€“Ray Astrophysics, ed. by C. Bambi, A. Santangelo (Springer, Singapore, 2022)

    Google ScholarĀ 

  • P. Bloser et al., Scintillators with silicon photomultiplier readouts for high-energy astrophysics and heliophysics, in Proceedings of the SPIE, vol. 9144 (2014)

    Google ScholarĀ 

  • P. Bloser et al., Balloon flight test of a Compton telescope based on scintillators with silicon photomultiplier readouts. Nucl. Inst. Methods Phys. Res. A 812, 92ā€“103 (2016)

    Google ScholarĀ 

  • P. Bloser, W.T. Vestrand et al., The mini astrophysical MeV background observatory (MAMBO) cubeSat mission. Proc. SPIE 11821, 118210I (2021). https://doi.org/10.1117/12.2594046

    Google ScholarĀ 

  • P. Bloser, W.T. Vestrand et al., The mini astrophysical MeV background observatory (MAMBO) cubeSat mission for gammaā€“ray astronomy. Proc. SPIE. 12181, 121812L (2022). https://doi.org/10.1117/12.2629069

    Google ScholarĀ 

  • J. Braga et al., LECX: a CubeSat experiment to detect and localize cosmic explosions in hard x-rays. MNRAS 493, 4852ā€“4860 (2020)

    Google ScholarĀ 

  • C. Burkhard, S. Weston, The Evolution of CubeSat Spacecraft Platforms. AVT-336 Specialistā€™ Meeting (2021)

    Google ScholarĀ 

  • C. Cappelletti, S. Battistini, B. Malphrus (ed.), CubeSat Handbook: From Mission Design to Operations, London, (Academic, 2021)

    Google ScholarĀ 

  • C. Castillo-Sancho et al., Lessons learned from AIV in ESAā€™s fly your satellite! Educational CubeSat programme, in 35th Annual Small Satellite Conference (2021)

    Google ScholarĀ 

  • H. Chang et al., The Gamma-ray Transients Monitor (GTM) on board Formosat-8B and its GRB detection efficiency. Adv. Space Res. 69, 1249 (2022)

    Google ScholarĀ 

  • C. Chen et al., Design and test of a portable gamma-ray burst simulator for GECAM. Exp. Astron. 52, 45ā€“58 (2021)

    Google ScholarĀ 

  • T. Cline et al., Energy spectra of cosmic gammaā€“ray bursts. Astrophys. J. 185, L1 (1973)

    Google ScholarĀ 

  • A. de Angelis et al., Gamma-ray astrophysics in the MeV range. Exp. Astron. 51, 1225ā€“1254 (2021)

    Google ScholarĀ 

  • J. DeLange et al., Sensor for small satellite relative PNT in deep-space. IEEE/ION Position, Location and Navigation Symposium (PLANS) (2016). https://doi.org/10.1109/PLANS.2016.7479794

    Google ScholarĀ 

  • B. Dennis et al., Ramaty high energy solar spectroscopic imager (RHESSI), in Handbook of X-Ray and Gammaā€“Ray Astrophysics, ed. by C. Bambi, A. Santangelo (Springer, Singapore, 2022)

    Google ScholarĀ 

  • R. Diehl, Gamma-ray observations of cosmic nuclei, in The 16th International Symposium on Nuclei in the Cosmos (NIC-XVI), ed. by W. Liu, Y. Wang, B. Guo, X. Tang, S. Zeng, EPJ Web of Conferences, Chengdu, vol. 260 (2022). id.10001. https://doi.org/10.1051/epjconf/202226010001

  • A. Di Giovanni et al., Characterisation of a CeBr3(LB) detector for space application. J. Instrum. 14, P09017, pp. 15, (2019)

    Google ScholarĀ 

  • E. Dotto et al., LICIACube ā€“ the light Italian cubesat for imaging of asteroids in support of the NASA DART mission towards asteroid (65803) didymos. Planet. Space Sci. 105185, pp. 12, 199, (2021)

    Google ScholarĀ 

  • M. Doyle et al., Update on the status of the Educational Irish Research Satellite (EIRSAT-1), in 4th Symposium on Space Educational Activities (Universitat PolitĆ©cnica de Catalunya, 2022a)

    Google ScholarĀ 

  • M. Doyle et al., Design, development, and testing of flight software for EIRSAT-1: a university-class CubeSat enabling astronomical research, in SPIE Astronomical Telescopes and Instrumentation, MontrĆ©al (2022b)

    Google ScholarĀ 

  • M. Doyle et al., Mission test campaign for the EIRSAT-1 engineering qualification model. Aerospace, pp. 28, 9, 100 (2022c)

    Google ScholarĀ 

  • R. Dunwoody et al., Thermal vacuum test campaign of the EIRSAT-1 engineering qualification model. Aerospace, pp. 30, 9, 99 (2022a)

    Google ScholarĀ 

  • R. Dunwoody et al., Validation of the operations manual for EIRSAT-1, a 2U CubeSat with a novel gammaā€“ray burst detector, in SPIE Astronomical Telescopes and Instrumentation, MontrĆ©al (2022b)

    Google ScholarĀ 

  • Y. Evangelista et al., The Scientific Payload on-Board the HERMES-TP and HERMES-SP CubeSat Missions; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Washington, DC (2020)

    Google ScholarĀ 

  • S. Fabiani et al., CUSP: a two CubeSats constellation for Space Weather and solar flares X-ray polarimetry. SPIE Montreal (2022)

    Google ScholarĀ 

  • A. Falcone et al., A soft X-ray sky monitor, transient finder, and burst detector for high-energy and multimessenger astrophysics. Bull. Am. Astron. Soc. 54(3), (2022). https://baas.aas.org/pub/2022n3i108p38

  • H. Feng, P. Kaaret, The HaloSat and PolarLight CubeSat Missions for X-ray Astrophysics, in Handbook of X-Ray and Gammaā€“Ray Astrophysics, ed. by C. Bambi, A. Santangelo (Springer, Singapore, 2022). https://arxiv.org/abs/2201.03155

    Google ScholarĀ 

  • F. Fiore et al., The HERMES-Technologic and Scientific Pathfinder; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Washington, DC (2020)

    Google ScholarĀ 

  • G.J. Fishman et al., Discovery of intense gammaā€“ray flashes of atmospheric origin. Science 264, 1313ā€“1316 (1994)

    Google ScholarĀ 

  • R. Gill et al., Linear polarization in gamma-ray burst prompt emission. MNRAS 491, 3343 (2020)

    Google ScholarĀ 

  • G. Giuffrida et al., CloudScout: a deep neural network for on-board cloud detection on hyperspectral images. Remote Sens. 12, 2205 (2020)

    Google ScholarĀ 

  • J. Greiner et al., GRIPS ā€“ gamma-ray imaging, polarimetry and spectroscopy. Exp. Astron. 34, 551ā€“582 (2012)

    Google ScholarĀ 

  • A. Harding, Multi-wavelength polarimetry of isolated pulsars, in Astronomical Polarisation from the Infrared to Gamma Rays. Astrophysics and Space Science Library, vol. 460, ed. by R. Mignani, A. Shearer, A. Słowikowska, S. Zane (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-19715-5_11

  • Z. Hughes, M. Errando, T. Olbemo, W. Ho, A compact gammaā€“ray spectrometer for nuclear astrophysics and planetary science. Proc. SPIE 12181, 1218176 (2021)

    Google ScholarĀ 

  • A. Iyudin et al., Scintillation detectors in gammaā€“ray astronomy, in Handbook of X-Ray and Gammaā€“Ray Astrophysics, ed. by C. Bambi, A. Santangelo (Springer, Singapore, 2022)

    Google ScholarĀ 

  • C. Kierans, AMEGO: exploring the extreme multi-messenger universe, in Proceedings of the SPIE, vol. 11444 (2020)

    Google ScholarĀ 

  • A. Kinnaird et al., Selection of lessons learned from phase C/D of CubeSat projects of the Fly Your Satellite! programme, in 4th Symposium on Space Educational Activities, Barcelona (2022)

    Google ScholarĀ 

  • R. Klebesadel et al., Observations of gammaā€“ray bursts of cosmic origin. Astrophys. J. 182, L85 (1973)

    Google ScholarĀ 

  • E. Kulu, Small Launchers ā€“ 2021 Industry Survey and Market Analysis, in 72nd International Astronautical Congress (IAC 2021), Dubai (2021)

    Google ScholarĀ 

  • P. Kumar, B. Zhang, The physics of gammaā€“ray bursts and relativistic jets. Phys. Rep. 561, 1ā€“109 (2015)

    Google ScholarĀ 

  • P. Laurent et al., Polarized gamma-ray emission from the galactic black hole cygnus X-1. Science 332, 438 (2011)

    Google ScholarĀ 

  • P. Laurent et al., XGRE: a TGF/GRB detector on the TARANIS spacecraft. Mem. Della Soc. Astron. Italiana 90, 259 (2019)

    Google ScholarĀ 

  • P. Laurent et al., COMPOL: a gammaā€“ray polarimeter in a nanosat. Presented at Monitoring the High Energy Sky with Small Satellites, Brno (2022). https://www.grbnanosats.net/mediawiki/images/c/ca/Presentation_COMPOL_Laurent.pdf

    Google ScholarĀ 

  • A. Laviron et al., COMCUBE: a constellation of CubeSats to measure the GRB prompt emission polarization, in Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics, ed. by A. Siebert, K. BailliĆ©, E. Lagadec, N. Lagarde, J. Malzac, J.-B. Marquette, M. Nā€™Diaye, J. Richard, O. Venot (2021), pp. 105ā€“108

    Google ScholarĀ 

  • F. Lebrun et al., The Gamma Cube: a novel concept of gamma-ray telescope, in Proceedings of the SPIE, vol. 9144 (2014)

    Google ScholarĀ 

  • F. Lei et al., Compton polarimetry in gamma-ray astronomy. Space Sci. Rev. 82, 309 (1997)

    Google ScholarĀ 

  • G. Lucchetta et al., Introducing the MeVCube concept: a CubeSat for MeV observations. J. Cosmol. Astropart. Phys. (2022). https://arxiv.org/abs/2204.01325. Accepted for publication

  • J. Mangan et al., Performance analysis of embedded firmware for the detection of gammaā€“ray bursts on a 2U CubeSat, in SPIE Astronomical Telescopes and Instrumentation, MontrĆ©al (2022)

    Google ScholarĀ 

  • J. Mason et al., Miniature x-ray solar spectrometer: a science-oriented, university 3U cubeSat. J. Spacecr. Rockets 53, 328ā€“339 (2016)

    Google ScholarĀ 

  • J. Mason et al., MinXSS-2 cubeSat mission overview: improvements from the successful MinXSS-1 mission. Adv. Space Res. 66, 3ā€“9 (2020)

    Google ScholarĀ 

  • C. Meegan et al., The fermi gamma-ray burst monitor. Astrophys. J. 702, 791ā€“804 (2009)

    Google ScholarĀ 

  • D. Meier et al., SIPHRA 16-Channel Silicon Photomultiplier Readout ASIC Proceedings AMICSA&DSP 2016, Gothenburg, 12ā€“16 June 2016 (2016)

    Google ScholarĀ 

  • R. Millan et al., Small satellites for space science: a COSPAR scientific roadmap. Adv. Space Res. 64, 1466ā€“1517 (2019)

    Google ScholarĀ 

  • R. Miller, D. Lawrence, First light: MeV Astrophysics from the moon. Astrophys. J. 823, L31 (2016)

    Google ScholarĀ 

  • L. Mitchell et al., Strontium iodide radiation instrumentation II (SIRI-2), in Proceedings of the SPIE, vol. 11118 (2019)

    Google ScholarĀ 

  • L. Mitchell et al., GAGG Radiation Instrumentation (GARI), in Proceedings of the SPIE, vol. 11821 (2021)

    Google ScholarĀ 

  • K. Murase, I. Bartos, High-energy multimessenger transient astrophysics. Ann. Rev. Nucl. Part. Sci. 69, 477ā€“506 (2019)

    Google ScholarĀ 

  • D. Murphy et al., A compact instrument for gammaā€“ray burst detection on a CubeSat platform I: design drivers and expected performance. Exp. Astron. 52, 59ā€“84 (2021a)

    Google ScholarĀ 

  • D. Murphy et al., Balloon flight test of a CeBr3 detector with silicon photomultiplier readout. Exp. Astron. 52, 1ā€“34 (2021b)

    Google ScholarĀ 

  • D. Murphy et al., A compact instrument for gammaā€“ray burst detection on a CubeSat platform II: detailed design, assembly and validation. Exp. Astron. 53, 961ā€“990 (2022)

    Google ScholarĀ 

  • T. Norbert et al., The ASIM mission on the international space station. Space Sci. Rev. 215, 26 (2019)

    Google ScholarĀ 

  • A. PĆ”l et al., GRBAlpha: a 1U CubeSat mission for validating timing-based gammaā€“ray burst localization, in Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray. International Society for Optics and Photonics (SPIE, 2020), vol. 11444, ed. by J.W.A. den Herder, S. Nikzad, K. Nakazawa (2020), pp. 825ā€“833. https://doi.org/10.1117/12.2561351

  • J.S. Perkins et al., BurstCube: a CubeSat for gravitational wave counterparts. Proc. SPIE 2020, 277 (2020)

    Google ScholarĀ 

  • H. Phan, H. Halloin, P. Laurent, IGOSat ā€“ A 3U Cubesat for measuring the radiative electrons content in low Earth orbit and ionosphere. Nucl. Instrum. Methods Phys. Res. Sect. A 912, 389 (2018)

    Google ScholarĀ 

  • M. Pinilla-Orjuela, P. Bloser et al., A lunar CubeSat mission for high- sensitivity nuclear astrophysics. Proc. SPIE 11444, 1144456 (2020)

    Google ScholarĀ 

  • T. Piran, The physics of gammaā€“ray bursts. Rev. Mod. Phys. 76, 1143ā€“1210 (2004)

    Google ScholarĀ 

  • S. Poolakkil et al., The fermi-GBM gamma-ray burst spectral catalog: 10 yr of data. Astrophys. J. 913, 60, pp. 20, (2021)

    Google ScholarĀ 

  • R. Rahin et al., GALI: a gammaā€“ray burst localizing instrument. Proc. SPIE 11444, 114446E (2020)

    Google ScholarĀ 

  • J. Reilly et al., EIRFLAT-1: a FlatSat platform for the development and testing of the 2U CubeSat EIRSAT-1, in 4th Symposium on Space Educational Activities (Universitat PolitĆ©cnica de Catalunya, 2022)

    Google ScholarĀ 

  • J. Ripa et al., GRB 211019A: detection by GRBAlpha. GCN 30946 (2021). https://ui.adsabs.harvard.edu/abs/2021GCN.30946....1R/abstract

  • J. Ripa et al., Early results from GRBAlpha and VZLUSAT-2, in Proceedings of SPIE, Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray, vol. 12181 (2022). https://ui.adsabs.harvard.edu/link_gateway/2022arXiv220703272R/arxiv:2207.03272

  • P. Ruiz-Lapuente et al., The origin of the cosmic gammaā€“ray background in the MeV range. Astrophys. J. 820, 142 (2016)

    Google ScholarĀ 

  • A. Sanna et al., Timing Techniques Applied to Distributed Modular High-Energy Astronomy: The H.E.R.M.E.S. Project; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Washington, DC (2020), pp. 11444ā€“11251. Online only

    Google ScholarĀ 

  • D. Schloms et al., A flexible CubeSat education platform combining software development and hardware engineering, in 4th Symposium on Space Educational Activities (SSEA), Barcelona (2022)

    Google ScholarĀ 

  • V. SchĆ³nfelder et al., Instrument description and performance of the imaging gamma-ray telescope COMPTEL aboard the compton gammaā€“ray observatory. Astrophys. J. Suppl. 86, 657 (1993)

    Google ScholarĀ 

  • W. Setterberg et al., Geant4 modeling of a cerium bromide scintillator detector for the IMPRESS cubeSat mission. Proc. SPIE 12181, pp. 13, (2022)

    Google ScholarĀ 

  • T. Sharma et al., Results from the Advanced Scintillator Compton Telescope (ASCOT) balloon payload, in Proceedings of the SPIE, vol. 11444 (2020)

    Google ScholarĀ 

  • D. Sherwin et al., Wave-based attitude control of EIRSAT-1, 2U CubeSat, in 2nd Symposium on Space Educational Activities, Budapest (2018)

    Google ScholarĀ 

  • T. Siegert et al., Gamma-ray spectroscopy of positron annihilation in the Milky Way. Astron. Astrophys. 586, A84 (2016)

    Google ScholarĀ 

  • V. Tatischeff et al., The e-ASTROGAM gammaā€“ray space mission, in Proceedings of the SPIE, vol. 9905 (2016)

    Google ScholarĀ 

  • V. Tatischeff et al., The COMCUBE CubeSat mission for gammaā€“ray burst polarimetry. SPIE Montreal (2022a)

    Google ScholarĀ 

  • V. Tatischeff, P. Ubertini, T. Mizuno, L. Natalucci, Orbits and background of gamma-ray space instruments, in Handbook of X-Ray and Gammaā€“Ray Astrophysics, ed. by C. Bambi, A. Santangelo (Springer, Singapore, 2022b). https://arxiv.org/pdf/2209.07316.pdf

    Google ScholarĀ 

  • J. Thompson et al., Thermal characterization testing of a robust and reliable thermal knife HDRM (Hold Down and Release Mechanism) for CubeSat deployables, in 4th Symposium on Space Educational Activities (Universitat PolitĆ©cnica de Catalunya, 2022)

    Google ScholarĀ 

  • K. Toma et al., Statistical properties of gamma-ray burst polarization. Astrophys. J. 698, 1042 (2009)

    Google ScholarĀ 

  • J. Trombka et al., Reanalysis of the Apollo cosmic gammaā€“ray spectrum in the 0.3ā€“10 MeV energy region. Astrophys. J. 212, 925 (1977)

    Google ScholarĀ 

  • A. Ulyanov et al., Using the SIPHRA ASIC with an SiPM array and scintillators for gamma spectroscopy, in IEEE Nuclear Science Symposium and Medical Imaging Conference (2017a)

    Google ScholarĀ 

  • A. Ulyanov et al., Localisation of gamma-ray interaction points in thick monolithic CeBr3 and LaBr3:Ce scintillators. Nucl. Inst. Methods Phys. Res. A 844, 81ā€“89 (2017b)

    Google ScholarĀ 

  • A. Ulyanov et al., Radiation damage study of SensL J-series silicon photomultipliers using 101.4 MeV protons. Nucl. Inst. Methods Phys. Res. A 976, 164203 (2020). Article id. 164203

    Google ScholarĀ 

  • A. Ulyanov et al., GIFTS: gammaā€“ray investigation of the full transient sky. Presented at Monitoring the High Energy Sky with Small Satellites, Brno (2022). https://www.grbnanosats.net/mediawiki/images/b/b5/Brno_gifts.pdf

    Google ScholarĀ 

  • W.T. Vestrand, P. Bloser et al., The mini astrophysical MeV background observatory (MAMBO), in 36th International Cosmic Ray Conference (ICRC2019), vol. 608 (2019)

    Google ScholarĀ 

  • P. von Ballmoos et al., A DUAL mission for nuclear astrophysics. Exp. Astron. 34, 583ā€“622 (2012)

    Google ScholarĀ 

  • S. Walsh et al., Development of the EIRSAT-1 CubeSat through functional verification of the engineering qualification model. Aerospace 8, 254, pp. 19, (2021)

    Google ScholarĀ 

  • X.I. Wang, GRB 210121A: a typical fireball burst detected by two small missions. Astrophys. J. 922, 237 (2021)

    Google ScholarĀ 

  • K. Watanabe et al., The MeV cosmic gammaā€“ray background measured with SMM. AIP Conf. Proc. 510, 471 (2000)

    Google ScholarĀ 

  • G. Weidenspointner et al., The cosmic diffuse gammaā€“ray background measured with COMPTEL. AIP Conf. Proc. 510, 581 (2000)

    Google ScholarĀ 

  • G. Weidenspointner et al., The COMPTEL instrumental line background. Astron. Astrophys. 368, 347ā€“368 (2001)

    Google ScholarĀ 

  • G. Weidenspointner et al., First identification and modelling of SPI background lines. Astron. Astrophys. 411, L113ā€“L116 (2003)

    Google ScholarĀ 

  • J. Wen et al., GRID: a student project to monitor the transient gammaā€“ray sky in the multi-messenger astronomy era. Exp. Astron. 48, 77ā€“95 (2019)

    Google ScholarĀ 

  • C.-Y. Yang et al., Feasibility of observing gammaā€“ray polarization from cygnus X-1 using a cubeSat. Astron. J. 160, 54 (2020)

    Google ScholarĀ 

  • V. Zharkova et al., Recent advances in understanding particle acceleration processes in solar flares. Space Sci. Rev. 159, 357 (2011)

    Google ScholarĀ 

  • X. Zheng, In-orbit radiation damage characterization of SiPMs in GRID-02 CubeSat detector (2022). Available via arXiv https://arxiv.org/abs/2205.10506

Download references

Acknowledgements

PB acknowledges support from the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number 20210047DR. DM acknowledges support from Science Foundation Ireland grant 19/FFP/6777.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Bloser or David Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bloser, P., Murphy, D., Fiore, F., Perkins, J. (2024). CubeSats for Gamma-Ray Astronomy. In: Bambi, C., Santangelo, A. (eds) Handbook of X-ray and Gamma-ray Astrophysics. Springer, Singapore. https://doi.org/10.1007/978-981-19-6960-7_53

Download citation

Publish with us

Policies and ethics