Skip to main content

Compton Telescopes for Gamma-Ray Astrophysics

  • Reference work entry
  • First Online:
Handbook of X-ray and Gamma-ray Astrophysics

Abstract

Compton telescopes rely on the dominant interaction mechanism in the MeV gamma-ray energy range: Compton scattering. By precisely recording the position and energy of multiple Compton-scattering interactions in a detector volume, a photon’s original direction and energy can be recovered. These powerful survey instruments can have wide fields of view, good spectroscopy, and polarization capabilities and can address many of the open science questions in the MeV range and, in particular, from multimessenger astrophysics. The first space-based Compton telescope was launched in 1991, and progress in the field continues with advancements in detector technology. This chapter will give an overview of the physics of Compton scattering and the basic principles of operation of Compton telescopes; electron-tracking and polarization capabilities will be discussed. A brief introduction to Compton event reconstruction and imaging reconstruction is given. The point spread function for Compton telescopes and standard performance parameters are described, and notable instrument designs are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie et al., GEANT4 – a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 506(3), 250–303 (2003)

    ADS  Google Scholar 

  • M. Ajello, W.B. Atwood, M. Axelsson, R. Bagagli, M. Bagni, L. Baldini, D. Bastieri, F. Bellardi, R. Bellazzini, E. Bissaldi, E.D. Bloom, R. Bonino, J. Bregeon, A. Brez, P. Bruel, R. Buehler, S. Buson, R.A. Cameron, P.A. Caraveo, E. Cavazzuti, M. Ceccanti, S. Chen, C.C. Cheung et al., Fermi large area telescope performance after 10 years of operation. Astrophys. J. Suppl. Ser. 256(1), 12 (2021). https://doi.org/10.3847/1538-4365/ac0ceb

  • A. Akyüz, D. Bhattacharya, T. O’Neill, J. Samimi, A. Zych, Enhanced performance of an electron tracking Compton gamma-ray telescope. New Astron. 9(2), 127–135 (2004). ISSN 1384-1076. https://doi.org/10.1016/j.newast.2003.07.004. https://www.sciencedirect.com/science/article/pii/S1384107603001131

  • M. Amman, High purity germanium based radiation detectors with segmented amorphous semiconductor electrical contacts: fabrication procedures (2020). https://arxiv.org/abs/2006.05471

    Google Scholar 

  • M. Amman, P.N. Luke, Three-dimensional position sensing and field shaping in orthogonal-strip germanium gamma-ray detectors. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 452(1–2), 155–166 (2000)

    ADS  Google Scholar 

  • A. Andreyev, A. Sitek, A. Celler, Fast image reconstruction for Compton camera using stochastic origin ensemble approach. Med Phys. 428(38) (2011). https://doi.org/10.1118/1.3528170

  • R. Andritschke, A. Zoglauer, G. Kanbach, V. Schönfelder, F. Schrey, F. Schopper, P.F. Bloser, S.D. Hunter, J. Macri, R.S. Miller, V.N. Litvinenko, I.V. Pinayev, Calibration of the MEGA prototype, in 5th INTEGRAL Workshop on the INTEGRAL Universe, vol. 552 (ESA Special Publication, 2004), p. 761

    Google Scholar 

  • E. Aprile, A. Bolotnikov, D. Chen, R. Mukherjee, A Monte Carlo analysis of the liquid xenon TPC as gamma-ray telescope. Nucl. Instrum. Methods Phys. Res. Secti. A: Accel. Spectrom. Detect. Assoc. Equip. 327(1), 216–221 (1993). ISSN 0168-9002. https://doi.org/10.1016/0168-9002(93)91446-T. https://www.sciencedirect.com/science/article/pii/016890029391446T

  • E. Aprile, V. Egorov, K.-L. Giboni, S.M. Kahn, T. Kozu, U.G. Oberlack, S. Centro, S. Ventura, T. Doke, J. Kikuchi, E.L. Chupp, P.P. Dunphy, D.H. Hartmann, M.D. Leising, H. Bloemen, XENA: a liquid-xenon Compton telescope for gamma-ray astrophysics in the MeV regime, in Hard X-Ray and Gamma-Ray Detector Physics and Applications, ed. by F.P. Doty, R.B. Hoover. International Society for Optics and Photonics, vol. 3446 (SPIE, 1998), pp. 88–99. https://doi.org/10.1117/12.312882

  • E. Aprile, A. Curioni, V. Egorov, K.L. Giboni, T. Kozu, U. Oberlack, S. Ventura, T. Doke, J. Kikuchi, K. Takizawa, E.L. Chupp, P.P. Dunphy, LXeGRIT: the liquid xenon gamma-ray imaging telescope, in The Fifth Compton Symposium, vol. 510. American Institute of Physics Conference Series (2000a), pp. 799–803. https://doi.org/10.1063/1.1303308

  • E. Aprile, A. Curioni, V. Egorov, K.-L. Giboni, U.G. Oberlack, S. Ventura, T. Doke, J. Kikuchi, K. Takizawa, E.L. Chupp, P.P. Dunphy, Spectroscopy and imaging performance of the Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT), in X-Ray and Gamma-Ray Instrumentation for Astronomy XI. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 4140 (2000b), pp. 333–343. https://doi.org/10.1117/12.409129

  • E. Aprile, A. Curioni, V. Egorov, K.L. Giboni, U. Oberlack, S. Ventura, T. Doke, K. Takizawa, E.L. Chupp, P.P. Dunphy, A liquid xenon time projection chamber for /γ-ray imaging in astrophysics: present status and future directions. Nucl. Instrum. Methods Phys. Res. A 461(1–3), 256–261 (2001). https://doi.org/10.1016/S0168-9002(00)01220-1

    ADS  Google Scholar 

  • T. Aramaki, P.O.H. Adrian, G. Karagiorgi, H. Odaka, Dual MeV gamma-ray and dark matter observatory – GRAMS Project. Astropart. Phys. 114, 107–114 (2020). ISSN 09276505. https://doi.org/10.1016/j.astropartphys.2019.07.002

  • W.B. Atwood, A.A. Abdo, M. Ackermann, W. Althouse, B. Anderson, M. Axelsson, L. Baldini, J. Ballet, D.L. Band, G. Barbiellini, J. Bartelt, D. Bastieri, B.M. Baughman, K. Bechtol, D. Bédérède, F. Bellardi, R. Bellazzini, B. Berenji, G.F. Bignami, D. Bisello et al., The large area telescope on the fermi gamma-ray space telescope mission. Astrophys. J. 697(2), 1071–1102 (2009). https://doi.org/10.1088/0004-637x/697/2/1071

    ADS  Google Scholar 

  • H.H. Barrett, T. White, L.C. Parra, List-mode likelihood. J. Opt. Soc. Am. A 14(11), 2914–2923 (1997). https://doi.org/10.1364/JOSAA.14.002914. http://opg.optica.org/josaa/abstract.cfm?URI=josaa-14-11-2914

  • J. Beechert, H. Lazar, S.E. Boggs, T.J. Brandt, Y.-C. Chang, C.-Y. Chu, H. Gulick, C. Kierans, A. Lowell, N. Pellegrini, J.M. Roberts, T. Siegert, C. Sleator, J.A. Tomsick, A. Zoglauer, Calibrations of the Compton spectrometer and imager. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 1031, 166510 (2022). https://doi.org/10.1016/j.nima.2022.166510

    Google Scholar 

  • E.C. Bellm, Studies of Gamma-Ray Burst Prompt Emission with RHESSI and NCT. PhD thesis, University of California, Berkeley (2011)

    Google Scholar 

  • M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: photon cross sections database. http://physics.nist.gov/xcom (2017)

  • D. Bernard, Compton polarimetry revisited. Nucl. Instrum. Methods Phys. Res. A 799, 155–158 (2015). https://doi.org/10.1016/j.nima.2015.08.011

    ADS  Google Scholar 

  • H.A. Bethe, Molière’s theory of multiple scattering. Phys. Rev. 89, 1256–1266 (1953). https://doi.org/10.1103/PhysRev.89.1256

    ADS  MathSciNet  Google Scholar 

  • V. Bhalerao, D. Bhattacharya, A. Vibhute, P. Pawar, A.R. Rao, M.K. Hingar, R. Khanna, A.P.K. Kutty, J.P. Malkar, M.H. Patil, Y.K. Arora, S. Sinha, P. Priya, E. Samuel, S. Sreekumar, P. Vinod, N.P.S. Mithun, S.V. Vadawale, N. Vagshette, K.H. Navalgund, K.S. Sarma, R. Pandiyan, S. Seetha, K. Subbarao, The Cadmium Zinc Telluride Imager on AstroSat. J. Astrophys. Astron. 38(2), 31 (2017). https://doi.org/10.1007/s12036-017-9447-8

    Google Scholar 

  • J. Black, R. Baker, P. Deines-Jones, J. Hill, K. Jahoda, X-ray polarimetry with a micropattern TPC. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 581(3), 755–760 (2007). ISSN 0168-9002. https://doi.org/10.1016/j.nima.2007.08.144. https://www.sciencedirect.com/science/article/pii/S0168900207018463

  • P.F. Bloser, R. Andritschke, G. Kanbach, V. Schönfelder, F. Schopper, A. Zoglauer, The MEGA advanced Compton telescope project. New Astron. Rev. 46(8–10), 611–616 (2002). https://doi.org/10.1016/S1387-6473(02)00209-9

    ADS  Google Scholar 

  • P.F. Bloser, J.S. Legere, M.L. McConnell, J.R. Macri, C.M. Bancroft, T.P. Connor, J.M. Ryan, Calibration of the Gamma-RAy Polarimeter Experiment (GRAPE) at a polarized hard X-ray beam. Nucl. Instrum. Methods Phys. Res. A 600(2), 424–433 (2009). https://doi.org/10.1016/j.nima.2008.11.118

    ADS  Google Scholar 

  • P.F. Bloser, T. Sharma, J.S. Legere, C.M. Bancroft, M.L. McConnell, J.M. Ryan, A.M. Wright, The Advanced Scintillator Compton Telescope (ASCOT) balloon payload, in Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699 (2018), p. 106995X. https://doi.org/10.1117/12.2312150

  • P.F. Bloser, K. Ogasawara, J.A. Trevino, J.S. Legere, J.M. Ryan, M.L. McConnell, Diamond scattering detectors for Compton telescopes, in 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (2019), pp. 1–3. https://doi.org/10.1109/NSS/MIC42101.2019.9059643

  • S.E. Boggs, P. Jean, Event reconstruction in high resolution Compton telescopes. Astron. Astrophys. Suppl. Ser. 145(2), 311–321 (2000)

    ADS  Google Scholar 

  • S.E. Boggs, P. Jean, Performance characteristics of high resolution Compton telescopes. Astron. Astrophys. 376, 1126–1134 (2001). https://doi.org/10.1051/0004-6361:20011058

    ADS  Google Scholar 

  • S. Brenner, Life sentences: detective rummage investigates. Genome Biol. 3(9), 1013.1–2 (2002a)

    Google Scholar 

  • S. Brenner, Nobel Lecture. NobelPrize.org. Nobel Prize Outreach AB 2023. Tue. 7 Feb 2023 (2002b)

    Google Scholar 

  • I. Brewer, M. Negro, N. Striebig, C. Kierans, R. Caputo, R. Leys, I. Peric, H. Fleischhack, J. Metcalfe, J. Perkins, Developing the future of gamma-ray astrophysics with monolithic silicon pixels. Nucl. Instrum. Methods Phys. Res. A 1019, 165795 (2021). https://doi.org/10.1016/j.nima.2021.165795

    Google Scholar 

  • J.M. Burgess, M. Kole, F. Berlato, J. Greiner, G. Vianello, N. Produit, Z.H. Li, J.C. Sun, Time-resolved GRB polarization with POLAR and GBM. Simultaneous spectral and polarization analysis with synchrotron emission. Astron. Astrophys. 627, A105 (2019). https://doi.org/10.1051/0004-6361/201935056

    Google Scholar 

  • H. Cao, D. Bastieri, R. Rando, G. Urso, G. Luo, A. Paccagnella, Machine learning on Compton event identification for a nano-satellite mission. Exp. Astron. 47(1–2), 129–144 (2019). https://doi.org/10.1007/s10686-019-09620-4

    ADS  Google Scholar 

  • E. Cavallari and F. Frontera, Hard X-ray/soft gamma-ray experiments and missions: overview and prospects. Space Sci. Rev. 212(1–2), 429–518 (2017). https://doi.org/10.1007/s11214-017-0426-9

    ADS  Google Scholar 

  • E. Charles, J. Chiang, Event Reconstruction and Source Analysis Methods for Pair-Conversion Telescopes, vol. 5, Chap. 5 (The Pennsylvania State University, 2021), pp. 95–115. https://doi.org/10.1142/9789811203817_0005. https://www.worldscientific.com/doi/abs/10.1142/9789811203817_0005

  • T. Chattopadhyay, S.V. Vadawale, E. Aarthy, N.P.S. Mithun, V. Chand, A. Ratheesh, R. Basak, A.R. Rao, V. Bhalerao, S. Mate, B. Arvind, V. Sharma, D. Bhattacharya, Prompt emission polarimetry of gamma-ray bursts with the AstroSat CZT imager. Astrophys. J. 884(2), 123 (2019). https://doi.org/10.3847/1538-4357/ab40b7

  • T. Chattopadhyay, S.V. Vadawale, E. Aarthy, N.P.S. Mithun, V. Chand, A. Ratheesh, R. Basak, A.R. Rao, V. Bhalerao, S. Mate, B. Arvind, V. Sharma, D. Bhattacharya, Prompt emission polarimetry of gamma-ray bursts with the AstroSat CZT imager. Astrophys. J. 884(2), 123 (2019). https://doi.org/10.3847/1538-4357/ab40b7

  • H. Chen, H. Li, M.D. Reed, A.G. Sundaram, J. Eger, J.W. Hugg, S. Abbaszadeh, M. Li, G. Montemont, L. Verger, Y. Zhu, Z. He, Development of large-volume high-performance monolithic CZT radiation detector, in Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XX. International Society for Optics and Photonics, vol. 10762 (SPIE, 2018), pp. 55–73. https://doi.org/10.1117/12.2321244

  • W. Coburn, S.E. Boggs, Polarization of the prompt γ-ray emission from the γ-ray burst of 6 December 2002. Nature 423(6938), 415–417 (2003). https://doi.org/10.1038/nature01612

    ADS  Google Scholar 

  • W. Coburn, S. Amrose, S.E. Boggs, R.P. Lin, M. Amman, M.T. Burks, E.L. Hull, P.N. Luke, N.W. Mdden, 3D positioning germanium detectors for gamma-ray astronomy, in Proceedings of SPIE, vol. 4784 (2003)

    Google Scholar 

  • A.H. Compton, The spectrum of scattered x-rays. Phys. Rev. 22, 409–413 (1923). https://doi.org/10.1103/PhysRev.22.409

    ADS  Google Scholar 

  • A.H. Compton, Nobel lecture: X-rays as a branch of optics. NobelPrize.org (1927). https://www.nobelprize.org/prizes/physics/1927/compton/lecture/

  • CTA Observatory Performance, prod 5. https://www.cta-observatory.org/science/ctao-performance/

  • P. Cumani, M. Hernanz, J. Kiener, V. Tatischeff, A. Zoglauer, Background for a gamma-ray satellite on a low-Earth orbit. Exp. Astron. 47(3), 273–302 (2019). https://doi.org/10.1007/s10686-019-09624-0

    ADS  Google Scholar 

  • A. Curioni, Laboratory and Balloon Flight Performance of the Liquid Xenon Gamma Ray Imaging Telescope (LXeGRIT). PhD thesis, Columbia University (2004)

    Google Scholar 

  • A. Curioni, E. Aprile, T. Doke, K. Giboni, M. Kobayashi, U. Oberlack, A study of the LXeGRIT detection efficiency for MeV gamma-rays during the 2000 balloon flight campaign. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 576(2–3), 350–361 (2007). https://doi.org/10.1016/j.nima.2007.02.102

    ADS  Google Scholar 

  • G. Daniel, O. Limousin, D. Maier, A. Meuris, F. Carrel, Compton imaging reconstruction methods: a comparative performance study of direct back-projection, SOE, a new Bayesian algorithm and a new Compton inversion method applied to real data with Caliste. Eur. Phys. J. Web Conf. 225, 06006 (2020). https://doi.org/10.1051/epjconf/202022506006

    Google Scholar 

  • A. De Angelis, V. Tatischeff, M. Tavani, U. Oberlack, I. Grenier, L. Hanlon, R. Walter, A. Argan, P. von Ballmoos, A. Bulgarelli, I. Donnarumma, M. Hernanz, I. Kuvvetli, M. Pearce, A. Zdziarski, A. Aboudan, M. Ajello, G. Ambrosi, D. Bernard et al., The e-ASTROGAM mission. Exploring the extreme Universe with gamma rays in the MeV–GeV range. Exp. Astron. 44(1), 25–82 (2017). https://doi.org/10.1007/s10686-017-9533-6

    Google Scholar 

  • A. De Angelis, V. Tatischeff, I. Grenier, J. McEnery, M. Mallamaci, M. Tavani, U. Oberlack, L. Hanlon, R. Walter, A. Argan, P.V. Ballmoos, A. Bulgarelli, A. Bykov, M. Hernanz, G. Kanbach, I. Kuvvetli, M. Pearce et al., Science with e-ASTROGAM. J. High Energy Astrophys. 19, 1–106 (2018). https://doi.org/10.1016/j.jheap.2018.07.001

    ADS  Google Scholar 

  • A. De Angelis, V. Tatischeff, A. Argan, S. Brandt, A. Bulgarelli, A. Bykov, E. Costantini, R.C.D. Silva, I.A. Grenier, L. Hanlon, D. Hartmann, M. Hernanz, G. Kanbach, I. Kuvvetli, P. Laurent, M.N. Mazziotta, J. McEnery, A. Morselli, K. Nakazawa, U. Oberlack, M. Pearce, J. Rico, M. Tavani, P.V. Ballmoos, R. Walter, X. Wu, S. Zane, A. Zdziarski, A. Zoglauer, Gamma-ray astrophysics in the MeV range. Exp. Astron. 51(3), 1225–1254 (2021). https://doi.org/10.1007/s10686-021-09706-y

    ADS  Google Scholar 

  • G. Di Cocco, E. Caroli, E. Celesti, L. Foschini, F. Gianotti, C. Labanti, G. Malaguti, A. Mauri, E. Rossi, F. Schiavone et al., IBIS/PICsIT in-flight performances. Astron. Astrophys. 411(1), L189–L195 (2003)

    ADS  Google Scholar 

  • R. Diehl, K. Bennett, W. Collmar, A. Connors, J.W. den Herder, W. Hermsen, G.G. Lichti, J.A. Lockwood, J. Macri, M. McConnell, D. Morris, J. Ryan, V. Schönfelder, H. Steinle, A.W. Strong, B.N. Swanenburg, C. de Vries, C. Winkler, Data analysis of the COMPTEL instrument on the NASA Gamma Ray Observatory, in NASA Conference Publication, vol. 3137 (1992), pp. 95–101

    Google Scholar 

  • R. Diehl, K. Bennett, H. Bloemen, H. Deboer, M. Busetta, W. Collmar, A. Connors, J.W. Denherder, C. Devries, W. Hermsen, J. Knodlseder, L. Kuiper, G.G. Lichti, J. Lockwood, J. Macri, M. McConnell, D. Morris, R. Much, J. Ryan, V. Schonfelder, G. Simpson, J.G. Stacy, H. Steinle, A.W. Strong, B.N. Swanenburg, M. Varendorff, P. von Ballmoos, W. Webber, C. Winckler, First results from COMPTEL measurements of the 26Al 1.8 MeV gamma-ray line from the galactic center region. Astron. Astrophys. Suppl. Ser. 97, 181–184 (1993)

    Google Scholar 

  • R. Diehl, C. Dupraz, K. Bennett, H. Bloemen, W. Hermsen, J. Knoedlseder, G. Lichti, D. Morris, J. Ryan, V. Schoenfelder, H. Steinle, A. Strong, B. Swanenburg, M. Varendorff, C. Winkler, COMPTEL observations of Galactic 26Al emission. Astron. Astrophys. 298, 445 (1995)

    ADS  Google Scholar 

  • Y. Du, Z. He, G. Knoll, D. Wehe, W. Li, Evaluation of a Compton scattering camera using 3-D position sensitive CdZnTe detectors. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 457(1), 203–211 (2001). ISSN 0168-9002. https://doi.org/10.1016/S0168-9002(00)00669-0. https://www.sciencedirect.com/science/article/pii/S0168900200006690

  • J.W.M. Du Mond, Compton modified line structure and its relation to the electron theory of solid bodies. Phys. Rev. 33, 643–658 (1929). https://link.aps.org/doi/10.1103/PhysRev.33.643

    ADS  Google Scholar 

  • K. Engel, J. Goodman, P. Huentemeyer, C. Kierans, T.R. Lewis, M. Negro, M. Santander, D.A. Williams et al., The Future of Gamma-Ray Experiments in the MeV-EeV Range. arXiv e-prints, art. arXiv:2203.07360 (2022)

    Google Scholar 

  • R.D. Evans, The Atomic Nucleus (McGraw-Hill Publishing, New York, 1955)

    Google Scholar 

  • Fermi LAT Performance, P8R3_V3. May 2022, https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm

    Google Scholar 

  • H. Fleischhack, AMEGO-X: MeV Gamma-Ray Astronomy in the Multimessenger Era (2021). https://arxiv.org/abs/2108.02860

    Google Scholar 

  • M. Frandes, A. Zoglauer, V. Maxim, R. Prost, A tracking Compton-scattering imaging system for hadron therapy monitoring. IEEE Trans. Nucl. Sci. 57(1), 144–150 (2010). https://doi.org/10.1109/TNS.2009.2031679

    ADS  Google Scholar 

  • M. Frandes, B. Timar, D. Lungeanu, Image reconstruction techniques for Compton scattering based imaging: an overview. Curr. Med. Imag. 12(2), 95–105 (2016). ISSN 1573-4056/1875-6603. https://doi.org/10.2174/1573405612666160128233916. http://www.eurekaselect.com/article/73320

  • Y. Fukazawa, T. Mizuno, S. Watanabe, M. Kokubun, H. Takahashi, N. Kawano, S. Nishino, M. Sasada, H. Shirai, T. Takahashi, Y. Umeki, T. Yamasaki, T. Yasuda, A. Bamba, M. Ohno, T. Takahashi, M. Ushio, T. Enoto, T. Kitaguchi, K. Makishima, K. Nakazawa, Y. Uehara, S. Yamada, T. Yuasa, N. Isobe, M. Kawaharada, T. Tanaka, M. S. Tashiro, Y. Terada, K. Yamaoka, Modeling and reproducibility of Suzaku HXD PIN/GSO background. Publ. Astron. Soc. Jpn. 61(sp1), S17–S33 (2009). ISSN 0004-6264. https://doi.org/10.1093/pasj/61.sp1.S17

  • A. Haefner, D. Gunter, B. Plimley, R. Pavlovsky, K. Vetter, Gamma-ray momentum reconstruction from Compton electron trajectories by filtered back-projection. Appl. Phys. Lett. 105(18), 184101 (2014). https://doi.org/10.1063/1.4898087

  • H. Yu, G. Wang, Compton-camera-based SPECT for thyroid cancer imaging. J. X-Ray Sci. Technol. 29, 111–124 (2021). https://doi.org/10.3233/XST-200769

    Google Scholar 

  • G. Hasinger, B. Altieri, M. Arnaud, X. Barcons, J. Bergeron, H. Brunner, M. Dadina, K. Dennerl, P. Ferrando, A. Finoguenov et al., XMM-Newton observation of the Lockman Hole-I. The X-ray data. Astron. Astrophys. 365(1), L45–L50 (2001)

    ADS  Google Scholar 

  • W. Heitler, The Quantum Theory of Radiation (Oxford University Press, Oxford, 1954)

    Google Scholar 

  • D. Herzo, R. Koga, W. Millard, S. Moon, J. Ryan, R. Wilson, A. Zych, R. White, A large double scatter telescope for gamma rays and neutrons. Nucl. Instrum. Methods 123(3), 583–597 (1975). ISSN 0029-554X. https://doi.org/10.1016/0029-554X(75)90215-3. https://www.sciencedirect.com/science/article/pii/0029554X75902153

  • Hitomi Collaboration, F. Aharonian, H. Akamatsu, F. Akimoto, S.W. Allen, L. Angelini, M. Audard, H. Awaki, M. Axelsson, A. Bamba et al., Detection of polarized gamma-ray emission from the Crab nebula with the Hitomi Soft Gamma-ray Detector. Publ. Astron. Soc. Jpn. 70(6), 113 (2018)

    Google Scholar 

  • J. Hulsman, POLAR-2: a large scale gamma-ray polarimeter for GRBs, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 11444 (2020), p. 114442V. https://doi.org/10.1117/12.2559374

  • S.D. Hunter, P.F. Bloser, G.O. Depaola, M.P. Dion, G.A. DeNolfo, A. Hanu, M. Iparraguirre, J. Legere, F. Longo, M.L. McConnell, S.F. Nowicki, J.M. Ryan, S. Son, F.W. Stecker, A pair production telescope for medium-energy gamma-ray polarimetry. Astropart. Phys. 59, 18–28 (2014). ISSN 0927-6505. https://doi.org/10.1016/j.astropartphys.2014.04.002. https://www.sciencedirect.com/science/article/pii/S0927650514000413

  • Y. Ichinohe, Y. Uchida, S. Watanabe, I. Edahiro, K. Hayashi, T. Kawano, M. Ohno, M. Ohta, S. Takeda, Y. Fukazawa, M. Katsuragawa, K. Nakazawa, H. Odaka, H. Tajima, H. Takahashi, T. Takahashi, T. Yuasa, The first demonstration of the concept of narrow-FOV Si/CdTe semiconductor Compton camera. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 806, 5–13 (2016). ISSN 0168-9002. https://doi.org/10.1016/j.nima.2015.09.081. https://www.sciencedirect.com/science/article/pii/S0168900215011523

  • S. Ikeda, H. Odaka, M. Uemura, T. Takahashi, S. Watanabe, S. Takeda, Bin mode estimation methods for Compton camera imaging. Nucl. Instrum. Methods Phys. Res. A 760, 46–56 (2014). https://doi.org/10.1016/j.nima.2014.05.081

    ADS  Google Scholar 

  • A. Iltis, H. Snoussi, L.R.D. Magalhaes, M.Z. Hmissi, C.T. Zafiarifety, G.Z. Tadonkeng, C. Morel, Temporal imaging CeBr3 Compton camera: a new concept for nuclear decommissioning and nuclear waste management, in European Physical Journal Web of Conferences, vol. 170 (2018), p. 06003. https://doi.org/10.1051/epjconf/201817006003

  • P. Jean, J.E. Naya, J.F. Olive, P. von Ballmoos, Instrument concepts for high resolution γ-ray spectroscopy. Astron. Astrophys. Suppl. 120, 673–676 (1996)

    Google Scholar 

  • S. Kabuki, K. Hattori, R. Kohara, E. Kunieda, A. Kubo, H. Kubo, K. Miuchi, T. Nakahara, T. Nagayoshi, H. Nishimura, Y. Okada, R. Orito, H. Sekiya, T. Shirahata, A. Takada, T. Tanimori, K. Ueno, Development of electron tracking Compton camera using micro pixel gas chamber for medical imaging. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 580(2), 1031–1035 (2007). ISSN 0168-9002. https://doi.org/10.1016/j.nima.2007.06.098. https://www.sciencedirect.com/science/article/pii/S0168900207013186. Imaging 2006

  • T. Kamae, Future GeV γ-ray missions and new discovery potential, in High Energy Gamma-Ray Astronomy. American Institute of Physics Conference Series, vol 745 (2005), pp. 210–221. https://doi.org/10.1063/1.1878410

    ADS  Google Scholar 

  • T. Kamae, R. Enomoto, N. Canada, A new method to measure energy, direction, and polarization of gamma rays. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 260(1), 254–257 (1987). https://doi.org/10.1016/0168-9002(87)90410-4

    ADS  Google Scholar 

  • G. Kanbach, R. Andritschke, A. Zoglauer, M. Ajello, M.L. McConnell, J.R. Macri, J.M. Ryan, P. Bloser, S. Hunter, G. Di Cocco, J. Kurfess, V. Reglero, Development and calibration of the tracking Compton/Pair telescope MEGA. Nucl. Instrum. Methods Phys. Res. A 541(1–2), 310–322 (2005). https://doi.org/10.1016/j.nima.2005.01.071

    ADS  Google Scholar 

  • J. Katsuta, I. Edahiro, S. Watanabe, H. Odaka, Y. Uchida, N. Uchida, T. Mizuno, Y. Fukazawa, K. Hayashi, S. Habata, Y. Ichinohe, T. Kitaguchi, M. Ohno, M. Ohta, H. Takahashi, T. Takahashi, S. Takeda, H. Tajima, T. Yuasa, M. Itou, Study of the polarimetric performance of a Si/CdTe semiconductor Compton camera for the Hitomi satellite. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 840, 51–58 (2016). ISSN 0168-9002. https://doi.org/10.1016/j.nima.2016.09.057. https://www.sciencedirect.com/science/article/pii/S0168900216310129

  • C. Kierans, Detection of the 511 keV positron annihilation line with the Compton Spectrometer and Imager. PhD thesis, University of California, Berkeley (2018)

    Google Scholar 

  • C. Kierans, S.E. Boggs, J.-L. Chiu, A. Lowell, C. Sleator, J.A. Tomsick, A. Zoglauer, M. Amman, H.-K. Chang, C.-H. Tseng, C.-Y. Yang, C.-H. Lin, P. Jean, P. von Ballmoos, The 2016 Super Pressure Balloon Flight of the Compton Spectrometer and Imager. arXiv e-prints, art. arXiv:1701.05558 (2017)

    Google Scholar 

  • A. Kishimoto, J. Kataoka, T. Taya, L. Tagawa, S. Mochizuki, S. Ohsuka, Y. Nagao, K. Kurita, M. Yamaguchi, N. Kawachi et al., First demonstration of multi-color 3-D in vivo imaging using ultra-compact Compton camera. Sci. Rep. 7(1), 1–7 (2017)

    Google Scholar 

  • O. Klein, Y. Nishina, Über die streuung von strahlung durch freie elektronen nach der neuen relativistischen quantendynamik von dirac. Zeitschrift für Physik 52(11), 853–868 (1929)

    ADS  Google Scholar 

  • J. Knödlseder, P. von Ballmoos, R. Diehl, U. Oberlack, V. Schönfelder, H. Bloemen, W. Hermsen, J.M. Ryan, K. Bennett, COMPTEL gamma-ray line analysis techniques, in Gamma-Ray and Cosmic-Ray Detectors, Techniques, and Missions. Proceedings of the SPIE, vol 2806 (1996)

    Google Scholar 

  • J. Knödlseder, D. Dixon, K. Bennett, H. Bloemen, R. Diehl, W. Hermsen, U. Oberlack, J. Ryan, V. Schönfelder, P. von Ballmoos, Image reconstruction of COMPTEL 1.8 MeV 26Al line data. Astron. Astrophys. 345, 813–825 (1999)

    Google Scholar 

  • G.F. Knoll, Radiation Detection and Measurement, 3rd edn. (Wiley, New York, 2000). ISBN 978-0-471-07338-3

    Google Scholar 

  • J.E. Koglin, F.E. Christensen, W.W. Craig, T.R. Decker, C.J. Hailey, F.A. Harrison, C. Hawthorn, C.P. Jensen, K.K. Madsen, M. Stern, G. Tajiri, M.D. Taylor, NuSTAR hard x-ray optics, in Optics for EUV, X-Ray, and Gamma-Ray Astronomy II, vol. 5900. International Society for Optics and Photonics (SPIE, 2005), pp. 266–275. https://doi.org/10.1117/12.618601

  • M. Kole, T. Bao, T. Batsch, T. Bernasconi, F. Cadoux, J. Chai, Y. Dong, N. Gauvin, W. Hajdas, J. He, M. Kong, S. Kong, C. Lechanoine-Leluc, L. Li, Z. Li, J. Liu, X. Liu, R. Marcinkowski, S. Orsi, M. Pohl, N. Produit, D. Rapin, A. Rutczynska, D. Rybka, H. Shi, L. Song, J. Sun, J. Szabelski, R. Wang, Y. Wang, X. Wen, B. Wu, X. Wu, H. Xiao, S. Xiong, H. Xu, M. Xu, J. Zhang, L. Zhang, L. Zhang, S. Zhang, X. Zhang, Y. Zhang, A. Zwolinska, POLAR: final calibration and in-flight performance of a dedicated GRB polarimeter, in 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD) (2016), pp. 1–6. https://doi.org/10.1109/NSSMIC.2016.8069846

  • M. Kole, N. De Angelis, F. Berlato, J.M. Burgess, N. Gauvin, J. Greiner, W. Hajdas, H.C. Li, Z.H. Li, A. Pollo, N. Produit, D. Rybka, L.M. Song, J.C. Sun, J. Szabelski, T. Tymieniecka, Y.H. Wang, B.B. Wu, X. Wu, S.L. Xiong, S.N. Zhang, Y.J. Zhang, The POLAR gamma-ray burst polarization catalog. Astron. Astrophys. 644, A124 (2020). https://doi.org/10.1051/0004-6361/202037915

    Google Scholar 

  • H. Krawczynski, Analysis of the data from Compton X-ray polarimeters which measure the azimuthal and polar scattering angles. Astropart. Phys. 34(10), 784–788 (2011). ISSN 0927-6505. https://doi.org/10.1016/j.astropartphys.2011.02.001. https://www.sciencedirect.com/science/article/pii/S0927650511000284

  • J.D. Kurfess, W.N. Johnson III, R.A. Kroeger, B.F. Philips, Considerations for the next Compton telescope mission. AIP Conf. Proc. 510(1), 789–793 (2000)

    ADS  Google Scholar 

  • F. Lebrun, The ISGRI CdTe gamma camera in-flight performance. IEEE Trans. Nucl. Sci. 52(6), 3119–3123 (2005). https://doi.org/10.1109/TNS.2005.862920

    ADS  Google Scholar 

  • W. Lee, A. Bolotnikov, T. Lee, G. Camarda, Y. Cui, R. Gul, A. Hossain, R. Utpal, G. Yang, R. James, Mini Compton camera based on an array of virtual Frisch-grid CdZnTe detectors. IEEE Trans. Nucl. Sci. 63(1), 259–265 (2016). https://doi.org/10.1109/TNS.2015.2514120

    ADS  Google Scholar 

  • J. Lee, Y. Kim, A. Bolotnikov, W. Lee, Evaluation of sequence tracking methods for Compton cameras based on CdZnTe arrays. Nucl. Eng. Technol. 53(12), 4080–4092 (2021). ISSN 1738-5733. https://doi.org/10.1016/j.net.2021.06.027. https://www.sciencedirect.com/science/article/pii/S173857332100348X

  • C. Lehner, Z. He, F. Zhang, 4π Compton imaging using a 3-d position-sensitive CdZnTe detector via weighted list-mode maximum likelihood. IEEE Trans. Nucl. Sci. 51(4), 1618–1624 (2004). https://doi.org/10.1109/TNS.2004.832573

    ADS  Google Scholar 

  • F. Lei, A.J. Dean, G.L. Hills, Compton polarimetry in gamma-ray astronomy. Space Sci. Rev. 82, 309–388 (1997)

    ADS  Google Scholar 

  • A.W. Lowell, S.E. Boggs, C.L. Chiu, C.A. Kierans, C. Sleator, J.A. Tomsick, A. Zoglauer, H.-K. Chang, C.-H. Tseng, C.-Y. Yang, P. Jean, P. von Ballmoos, C.-H. Lin, M. Amman Polarimetric analysis of the long duration gamma-ray burst GRB 160530a with the balloon borne Compton Spectrometer and Imager. Astrophys. J. 848(2), 119 (2017a)

    Google Scholar 

  • A.W. Lowell, S.E. Boggs, C.L. Chiu, C.A. Kierans, C. Sleator, J.A. Tomsick, A. Zoglauer, H.-K. Chang, C.-H. Tseng, C.-Y. Yang, P. Jean, P. von Ballmoos, C.-H. Lin, M. Amman, Maximum likelihood Compton polarimetry with the Compton Spectrometer and Imager. Astrophys. J. 848, 120 (2017b)))

    Google Scholar 

  • L.B. Lucy, An iterative technique for the rectification of observed distributions. Astron. J. 79(6), 745–754 (1974)

    ADS  Google Scholar 

  • M.L. McConnell, M. Baring, P. Bloser, M.S. Briggs, C. Ertley, G. Fletcher, J. Gaskin, K. Gelmis, A. Goldstein, E. Grove, D.H. Hartmann, M. Hui, P. Jenke, R.M. Kippen, F. Kislat, D. Kocevski, M. Kole, J.F. Krizmanic, J. Legere, T. Littenberg, N. Martin, S. McBreen, D. McQueen, C. Meegan, K.O. Melecio, M. Pearce, R. Preece, N. Produit, J. Ryan, S. Sturner, P. Veres, W.T. Vestrand, C. Wilson-Hodge, B. Zhang, The LargE Area burst Polarimeter (LEAP) a NASA mission of opportunity for the ISS, in UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXII. International Society for Optics and Photonics, vol. 11821 (SPIE, 2021), pp. 237–250. https://doi.org/10.1117/12.2594737

  • J. McEnery, J.A. Barrio, I. Agudo, M. Ajello, J.-M.lvarez, S. Ansoldi, S. Anton, N. Auricchio, J.B. Stephen, L. Baldini, C. Bambi, M. Baring, U. Barres, D. Bastieri, J. Beacom, V. Beckmann et al., All-sky Medium Energy Gamma-ray Observatory: Exploring the Extreme Multimessenger Universe (2019). https://arxiv.org/abs/1907.07558

  • Y. Mizumura, T. Tanimori, H. Kubo, A. Takada, J.D. Parker, T. Mizumoto, S. Sonoda, D. Tomono, T. Sawano, K. Nakamura, Y. Matsuoka, S. Komura, S. Nakamura, M. Oda, K. Miuchi, S. Kabuki, Y. Kishimoto, S. Kurosawa, S. Iwaki, Development of a 30 cm-cube electron-tracking Compton camera for the SMILE-II experiment. J. Instrum. 9(05), C05045–C05045 (2014). https://doi.org/10.1088/1748-0221/9/05/c05045

    Google Scholar 

  • T. Mizuno, T. Kamae, J.S.T. Ng, H. Tajima, J.W. Mitchell, R. Streitmatter, R.C. Fernholz, E. Groth, Y. Fukazawa, Beam test of a prototype detector array for the PoGO astronomical hard X-ray/soft gamma-ray polarimeter. Nucl. Instrum. Methods Phys. Res. A 540(1), 158–168 (2005). https://doi.org/10.1016/j.nima.2004.11.009

    ADS  Google Scholar 

  • S. Mochizuki, J. Kataoka, A. Koide, K. Fujieda, T. Maruhashi, T. Kurihara, K. Sueoka, L. Tagawa, M. Yoneyama, T. Inaniwa, High-precision Compton imaging of 4.4 MeV prompt gamma-ray toward an on-line monitor for proton therapy. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 936, 43–45 (2019). ISSN 0168-9002. https://doi.org/10.1016/j.nima.2018.11.032. https://www.sciencedirect.com/science/article/pii/S016890021831578X. Frontier Detectors for Frontier Physics: 14th Pisa Meeting on Advanced Detectors

  • S. Motomura, Y. Kanayama, M. Hiromura, T. Fukuchi, T. Ida, H. Haba, Y. Watanabe, S. Enomoto, Improved imaging performance of a semiconductor Compton camera GREI makes for a new methodology to integrate bio-metal analysis and molecular imaging technology in living organisms. J. Anal. At. Spectrom. 28, 934–939 (2013). https://doi.org/10.1039/C3JA30185K

    Google Scholar 

  • T. Nakano, M. Sakai, K. Torikai, Y. Suzuki, S. Takeda, S. ei Noda, M. Yamaguchi, Y. Nagao, M. Kikuchi, H. Odaka, T. Kamiya, N. Kawachi, S. Watanabe, K. Arakawa, T. Takahashi, Imaging of 99mTc-DMSA and 18F-FDG in humans using a Si/CdTe Compton camera. Phys. Med. Biol. 65(5), 05LT01 (2020). https://doi.org/10.1088/1361-6560/ab33d8

  • U.G. Oberlack, E. Aprile, A. Curioni, V. Egorov, K.-L. Giboni, Compton scattering sequence reconstruction algorithm for the liquid xenon gamma-ray imaging telescope (LXeGRIT), in Hard X-Ray, Gamma-Ray, and Neutron Detector Physics II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4141 (2000), pp. 168–177. https://doi.org/10.1117/12.407578

  • T.J. O’Neill, D. Bhattacharya, M. Polsen, A.D. Zych, J. Samimi, A. Akyuz, Development of the TIGRE Compton telescope for intermediate-energy gamma-ray astronomy. IEEE Trans. Nucl. Sci. 50(2), 251–257 (2003)

    ADS  Google Scholar 

  • R. Orito, K. Hattori, H. Kubo, K. Miuchi, T. Nagayoshi, H. Nishimura, Y. Okada, H. Sekiya, A. Takada, A. Takeda, T. Tanimori, Electron-tracking Compton telescope with a gaseous TPC, in IEEE Nuclear Science Symposium Conference Record, 2005, vol. 1 (2005), pp. 443–447. https://doi.org/10.1109/NSSMIC.2005.1596289

  • Particle Data Group, P.A. Zyla, R.M. Barnett, J. Beringer, O. Dahl, D.A. Dwyer, D.E. Groom, C.J. Lin, K.S. Lugovsky, E. Pianori, D.J. Robinson, C.G. Wohl, W.M. Yao, K. Agashe, G. Aielli, B.C. Allanach et al., Review of particle physics. Progress Theor. Exp. Phys. 2020(8) (2020). ISSN 2050-3911. https://doi.org/10.1093/ptep/ptaa104. 083C01

  • B. Plimley, D. Chivers, A. Coffer, T. Aucott, W. Wang, K. Vetter, Reconstruction of electron trajectories in high-resolution Si devices for advanced Compton imaging. Nucl. Instrum. Methods Phys. Res. A 652(1), 595–598 (2011). https://doi.org/10.1016/j.nima.2011.01.133

    ADS  Google Scholar 

  • S. Plüschke, R. Diehl, V. Schönfelder, H. Bloemen, W. Hermsen, K. Bennett, C. Winkler, M. McConnell, J. Ryan, U. Oberlack, J. Knödlseder, The COMPTEL 1.809 MeV survey, in Exploring the Gamma-Ray Universe, vol 459. (ESA Special Publication, 2001), pp. 55–58

    Google Scholar 

  • R. Ribberfors, Relationship of the relativistic Compton cross section to the momentum distribution of bound electron states. Phys. Rev. B 12, 2067–2074 (1975). https://doi.org/10.1103/PhysRevB.12.2067

    ADS  Google Scholar 

  • W.H. Richardson, Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55–59 (1972)

    ADS  Google Scholar 

  • J. Roques, S. Schanne, A. von Kienlin, J. Knödlseder, R. Briet, L. Bouchet, P. Paul, S. Boggs, P. Caraveo, M. Cassé et al., SPI/INTEGRAL in-flight performance. Astron. Astrophys. 411(1), L91–L100 (2003)

    ADS  Google Scholar 

  • Y. Sato, Y. Terasaka, W. Utsugi, H. Kikuchi, H. Kiyooka, T. Torii, Radiation imaging using a compact Compton camera mounted on a crawler robot inside reactor buildings of Fukushima Daiichi Nuclear Power Station. J. Nucl. Sci. Technol. 56(9–10), 801–808 (2019). https://doi.org/10.1080/00223131.2019.1581111

    Google Scholar 

  • V. Schönfelder, Lessons learnt from COMPTEL for future telescopes. New Astron. Rev. 48, 193–198 (2004)

    ADS  Google Scholar 

  • V. Schönfelder, G. Kanbach, Imaging Through Compton Scattering and Pair Creation (Springer, New York, 2013), pp. 225–242. ISBN 978-1-4614-7804-1. https://doi.org/10.1007/978-1-4614-7804-1_11

    Google Scholar 

  • V. Schönfelder, A. Hirner, K. Schneider, A telescope for soft gamma ray astronomy. Nucl. Instrum. Methods 107(2), 385–394 (1973). ISSN 0029-554X. https://doi.org/10.1016/0029-554X(73)90257-7. https://www.sciencedirect.com/science/article/pii/0029554X73902577

  • V. Schönfelder, H. Aarts, K. Bennett, H. de Boer, J. Clear, W. Collmar, A. Connors, A. Deerenberg, R. Diehl, A. von Dordrecht, J.W. den Herder, W. Hermsen, M. Kippen, L. Kuiper, G. Lichti, J. Lockwood, J. Marci, M. McConnell, D. Morris, R. Much, J. Ryan, G. Simpson, M. Snelling, G. Stacy, H. Steinle, A. Strong, B.N. Swanenburg, B. Taylor, C. de Vries, C. Winkler, Instrument description and performance of the imaging gamma-ray telescope COMPTEL aboard the Compton gamma-ray observatory. Astrophys. J. Suppl. 86, 657–692 (1993)

    Google Scholar 

  • V. Schönfelder, K. Bennett, J.J. Blom, H. Bloemen, W. Collmar, A. Connors, R. Diehl, W. Hermsen, A. Iyudin, R.M. Kippen, J. Knödlseder, L. Kuiper, G.G. Lichti, M. McConnell, D. Morris, R. Much, U. Oberlack, J. Ryan, G. Stacy, H. Steinle, A. Strong, R. Suleiman, R. van Dijk, M. Varendorff, C. Winkler, O.R. Williams, The first COMPTEL source catalogue. Astron. Astrophys. Suppl. Ser. 143(2), 145–179 (2000). ISSN 0365-0138. https://doi.org/10.1051/aas:2000101

  • F. Schopper, R. Andritschke, H. Shaw, C. Nefzger, A. Zoglauer, V. SchÃnfelder, G. Kanbach, CsI calorimeter with 3-D position resolution. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 442(1), 394–399 (2000). ISSN 0168-9002. https://doi.org/10.1016/S0168-9002(99)01261-9. https://www.sciencedirect.com/science/article/pii/S0168900299012619

  • A.Y. Shih, R.P. Lin, G.J. Hurford, N.A. Duncan, P. Saint-Hilaire, H.M. Bain, S.E. Boggs, A.C. Zoglauer, D.M. Smith, H. Tajima, M.S. Amman, T. Takahashi, The Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS), in Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray. International Society for Optics and Photonics, vol. 8443 (SPIE, 2012), pp. 1297–1311. https://doi.org/10.1117/12.926450

  • D. Shy, Z. He, Gamma-ray tracking for high energy gamma-ray imaging in pixelated CdZnTe. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 954, 161443 (2020). ISSN 0168-9002. https://doi.org/10.1016/j.nima.2018.10.121. https://www.sciencedirect.com/science/article/pii/S0168900218314359. Symposium on Radiation Measurements and Applications XVII

  • T. Siegert, S.E. Boggs, J.A. Tomsick, A.C. Zoglauer, C.A. Kierans, C.C. Sleator, J. Beechert, T.J. Brandt, P. Jean, H. Lazar, A.W. Lowell, J.M. Roberts, P. von Ballmoos, Imaging the 511 keV positron annihilation sky with COSI. Astrophys. J. 897(1), 45 (2020). https://doi.org/10.3847/1538-4357/ab9607

  • R. Staubert, On the statistical significance of excess events – remarks of cautionand the need for a standard method of calculation, in 19th International Cosmic Ray Conference (ICRC19), vol. 3 (1985), pp. 477–480

    Google Scholar 

  • A.W. Strong, Maximum entropy imaging of COMPTEL data. Exp. Astron. 6(4), 97–102 (1995). https://doi.org/10.1007/BF00419263

    ADS  Google Scholar 

  • A.W. Strong, K. Bennett, P. Cabeza-Orcel, A. Deerenberg, R. Diehl, W.J. den Herder, W. Hermsen, G. Lichti, J. Lockwood, M. McConnell, J. Macri, D. Morris, R. Much, J. Ryan, V. Schönfelder, G. Simpson, H. Steinle, N.B. Swanenburg, C. Winkler, Maximum entropy imaging with COMPTEL data. Int. Cosmic Ray Conf. 4, 154 (1990)

    Google Scholar 

  • E. Suarez Garcia, X-Ray polarization: RHESSI results and POLAR prospects. PhD thesis, Université de Genève (2010). https://nbn-resolving.org/urn:nbn:ch:unige-68897. ID: unige: 6889

  • Y. Suzuki, M. Yamaguchi, H. Odaka, H. Shimada, Y. Yoshida, K. Torikai, T. Satoh, K. Arakawa, N. Kawachi, S. Watanabe, S. Takeda, S.-N. Ishikawa, H. Aono, S. Watanabe, T. Takahashi, T. Nakano, Three-dimensional and multienergy gamma-ray simultaneous imaging by using a Si/CdTe Compton camera. Radiology 267(3), 941—947 (2013). ISSN 0033-8419. https://doi.org/10.1148/radiol.13121194

  • H. Tajima, S. Watanabe, Y. Fukazawa, R.D. Blandford, T. Enoto, A. Goldwurm, K. Hagino, K. Hayashi, Y. Ichinohe, J. Kataoka, J. Katsuta, T. Kitaguchi, M. Kokubun, P. Laurent, F. Lebrun, O. Limousin, G.M. Madejski, K. Makishima, T. Mizuno, K. Mori, T. Nakamori, T. Nakano, K. Nakazawa, H. Noda, H. Odaka, M. Ohno, M. Ohta, S. Saito, G. Sato, R. Sato, S. Takeda, H. Takahashi, T. Takahashi, T. Tanaka, Y. Tanaka, Y. Terada, H. Uchiyama, Y. Uchiyama, K. Yamaoka, Y. Yatsu, D. Yonetoku, T. Yuasa, Design and performance of Soft Gamma-ray Detector onboard the Hitomi (ASTRO-H) satellite. J. Astron. Telescopes Instrum. Syst. 4(2), 1–14 (2018). https://doi.org/10.1117/1.JATIS.4.2.021411

  • A. Takada, T. Takemura, K. Yoshikawa, Y. Mizumura, T. Ikeda, Y. Nakamura, K. Onozaka, M. Abe, K. Hamaguchi, H. Kubo, S. Kurosawa, K. Miuchi, K. Saito, T. Sawano, T. Tanimori, First observation of the MeV gamma-ray universe with bijective imaging spectroscopy using the electron-tracking Compton telescope on board SMILE-2+. Astrophys. J. 930(1), 6 (2022). https://doi.org/10.3847/1538-4357/ac6103

  • T. Takahashi, S. Takeda, S. Watanabe, H. Tajima, Visualization of radioactive substances with a Si/CdTe Compton Camera, in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (2012), pp. 4199–4204. https://doi.org/10.1109/NSSMIC.2012.6551958

  • T. Takahashi, M. Kokubun, K. Mitsuda, R.L. Kelley, T. Ohashi, F. Aharonian, H. Akamatsu, F. Akimoto, S.W. Allen, N. Anabuki et al., Hitomi (ASTRO-H) x-ray astronomy satellite. J. Astron. Telescopes Instrum. Syst. 4(2), 021402 (2018)

    Google Scholar 

  • S. Takeda, Experimental Study of a Si/CdTe Semiconductor Compton Camera for the Next Generation of Gamma-ray Astronomy. PhD thesis, The University of Tokyo (2009)

    Google Scholar 

  • S. Takeda, S. nosuke Ishikawa, H. Odaka, S. Watanabe, T. Takahashi, K. Nakazawa, H. Tajima, Y. Kuroda, M. Onishi, Y. Fukazawa, H. Yasuda, A new Si/CdTe semiconductor Compton camera developed for high-angular resolution, in Hard X-Ray and Gamma-Ray Detector Physics IX. International Society for Optics and Photonics, vol. 6706 (SPIE, 2007), pp. 187–197. https://doi.org/10.1117/12.733840

  • S. Takeda, H. Odaka, S.-N. Ishikawa, S. Watanabe, H. Aono, T. Takahashi, Y. Kanayama, M. Hiromura, S. Enomoto, Demonstration of in-vivo multi-probe tracker based on a Si/CdTe semiconductor Compton camera. IEEE Trans. Nucl. Sci. 59(1), 70–76 (2012). https://doi.org/10.1109/TNS.2011.2178432

    ADS  Google Scholar 

  • S. Takeda, A. Harayama, Y. Ichinohe, H. Odaka, S. Watanabe, T. Takahashi, H. Tajima, K. Genba, D. Matsuura, H. Ikebuchi, Y. Kuroda, T. Tomonaka, A portable Si/CdTe Compton camera and its applications to the visualization of radioactive substances. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 787, 207–211 (2015). ISSN 0168-9002. https://doi.org/10.1016/j.nima.2014.11.119. https://www.sciencedirect.com/science/article/pii/S0168900214014338. New Developments in Photodetection NDIP14

  • T. Tanimori, H. Kubo, K. Miuchi, T. Nagayoshi, R. Orito, A. Takada, A. Takeda, M. Ueno, MeV γ-ray imaging detector with micro-TPC. New Astron. Rev. 48(1–4), 263–268 (2004)

    ADS  Google Scholar 

  • T. Tanimori, H. Kubo, A. Takada, S. Iwaki, S. Komura, S. Kurosawa, Y. Matsuoka, K. Miuchi, S. Miyamoto, T. Mizumoto, Y. Mizumura, K. Nakamura, S. Nakamura, M. Oda, J.D. Parker, T. Sawano, S. Sonoda, T. Takemura, D. Tomono, K. Ueno, An electron-tracking Compton telescope for a survey of the deep universe by MeV gamma-rays. Astrophys. J. 810(1), 28 (2015). https://doi.org/10.1088/0004-637x/810/1/28

  • S. Tashenov, J. Gerl, TANGO – new tracking AlGOrithm for gamma-rays. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 622(3), 592–601 (2010). ISSN 0168-9002. https://doi.org/10.1016/j.nima.2010.07.040. https://www.sciencedirect.com/science/article/pii/S0168900210016505

  • V. Tatischeff, M.L. McConnell, P. Laurent, Gamma-Ray Polarimetry (Springer International Publishing, Cham, 2019), pp. 109–146. ISBN 978-3-030-19715-5. https://doi.org/10.1007/978-3-030-19715-5_5

    Google Scholar 

  • D.J. Thompson, D.L. Bertsch, C.E. Fichtel, R.C. Hartman, R. Hofstadter, E.B. Hughes, S.D. Hunter, B.W. Hughlock, G. Kanbach, D.A. Kniffen, Y.C. Lin, J.R. Mattox, H.A. Mayer-Hasselwander, C. von Montigny, P.L. Nolan, H.I. Nel, K. Pinkau, H. Rothermel, E.J. Schneid, M. Sommer, P. Sreekumar, D. Tieger, A.H. Walker, Calibration of the energetic gamma-ray experiment telescope (EGRET) for the Compton gamma-ray observatory. Astrophys. J. Suppl. 86, 629 (1993). https://doi.org/10.1086/191793

    ADS  Google Scholar 

  • C.L. Thrall, C.G. Wahl, Z. He, Performance of five-or-more-pixel event sequence reconstruction for 3-D semiconductor gamma-ray-imaging spectrometers, in 2008 IEEE Nuclear Science Symposium Conference Record (2008), pp. 1299–1301. https://doi.org/10.1109/NSSMIC.2008.4774644

  • D. Tomono, T. Mizumoto, A. Takada, S. Komura, Y. Matsuoka, Y. Mizumura, M. Oda, T. Tanimori, First on-site true gamma-ray imaging-spectroscopy of contamination near Fukushima plant. Sci. Rep. 7, 41972 (2017). https://doi.org/10.1038/srep41972

    ADS  Google Scholar 

  • J. Tomsick, COSI Collaboration, The compton spectrometer and imager project for MeV astronomy, in 37th International Cosmic Ray Conference, Berlin, 12–23 July 2021 (2022), p. 652

    Google Scholar 

  • T.O. Tumer, D. Bhattacharya, S.C. Blair, G.L. Case, D.D. Dixon, C.-L. Liu, T.J. O’Neill, R.S. White, A.D. Zych, Tracking and imaging gamma-ray experiment (TIGRE) for 300-keV to 100-MeV gamma-ray astronomy, in Gamma-Ray Detector Physics and Applications. International Society for Optics and Photonics, vol. 2305 (SPIE, 1994), pp. 51–62. https://doi.org/10.1117/12.187266

  • S.V. Vadawale, T. Chattopadhyay, A.R. Rao, D. Bhattacharya, V.B. Bhalerao, N. Vagshette, P. Pawar, S. Sreekumar, Hard X-ray polarimetry with Astrosat-CZTI. Astron. Astrophys. 578, A73 (2015). https://doi.org/10.1051/0004-6361/201525686

    ADS  Google Scholar 

  • S.V. Vadawale, T. Chattopadhyay, N.P.S. Mithun, A.R. Rao, D. Bhattacharya, A. Vibhute, V.B. Bhalerao, G.C. Dewangan, R. Misra, B. Paul, A. Basu, B.C. Joshi, S. Sreekumar, E. Samuel, P. Priya, P. Vinod, S. Seetha, Phase-resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager. Nat. Astron. 2, 50–55 (2018). https://doi.org/10.1038/s41550-017-0293-z

  • K. Vetter, D. Chivers, B. Plimley, A. Coffer, T. Aucott, Q. Looker, First demonstration of electron-tracking based Compton imaging in solid-state detectors. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 652(1), 599–601 (2011). ISSN 0168-9002. https://doi.org/10.1016/j.nima.2011.01.131. https://www.sciencedirect.com/science/article/pii/S0168900211002336. Symposium on Radiation Measurements and Applications (SORMA) XII 2010

  • K. Vetter, R. Barnowksi, A. Haefner, T.H. Joshi, R. Pavlovsky, B.J. Quiter, Gamma-ray imaging for nuclear security and safety: towards 3-D gamma-ray vision. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 878, 159–168 (2018). ISSN 0168-9002. https://doi.org/10.1016/j.nima.2017.08.040. https://www.sciencedirect.com/science/article/pii/S0168900217309269. Radiation Imaging Techniques and Applications

  • P. von Ballmoos, Instruments for Nuclear Astrophysics (Springer, Berlin/Heidelberg, 2005), pp. 82–197. ISBN 978-3-540-27013-3. https://doi.org/10.1007/3-540-27013-2_2

    Google Scholar 

  • P. von Ballmoos, R. Diehl, V. Schönfelder, Imaging the gamma-ray sky with Compton telescopes. Astron. Astrophys. Suppl. Ser. 221(2), 396–406 (1989)

    Google Scholar 

  • T. Watanabe, R. Enomoto, H. Muraishi, H. Katagiri, M. Kagaya, M. Fukushi, D. Kano, W. Satoh, T. Takeda, M.M. Tanaka, S. Tanaka, T. Uchida, K. Wada, R. Wakamatsu, Development of an omnidirectional gamma-ray imaging Compton camera for low-radiation-level environmental monitoring. Jpn. J. Appl. Phys. 57(2), 026401 (2018). https://doi.org/10.7567/JJAP.57.026401

  • M.C. Weisskopf, R.F. Elsner, S.L. O’Dell, On understanding the figures of merit for detection and measurement of x-ray polarization, in Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7732 (2010), p. 77320E. https://doi.org/10.1117/12.857357

  • S. Wilderman, N.H. Clinthorne, J.A. Fessler, W.L. Rogers, List-mode maximum likelihood reconstruction of Compton scatter camera images in nuclear medicine, in IEEE Nuclear Science Symposium and Medical Imaging Conference, vol. 3 (1998), pp. 1716–1720

    Google Scholar 

  • D.R. Willis, E.J. Barlow, A.J. Bird, D.J. Clark, A.J. Dean, M.L. McConnell, L. Moran, S.E. Shaw, V. Sguera, Evidence of polarisation in the prompt gamma-ray emission from GRB 930131 and GRB 960924. Astron. Astrophys. 439(1), 245–253 (2005). https://doi.org/10.1051/0004-6361:20052693

    ADS  Google Scholar 

  • XMM-Newton Science Operations Centre. XMM-Newton Users Handbook. https://xmm-tools.cosmos.esa.int/external/xmm_user_support/documentation/uhb/epicsens.html

  • D. Xu, Gamma-Ray Imaging and Polarization Measurement Using 3-D Position Sensitive CdZnTe Detectors. PhD thesis, The University of Michigan (2006)

    Google Scholar 

  • D. Xu, Z. He, C.E. Lehner, F. Zhang, 4-pi Compton imaging with single 3D position-sensitive CdZnTe detector, in Hard X-Ray and Gamma-Ray Detector Physics VI. International Society for Optics and Photonics, vol. 5540 (SPIE, 2004), pp. 144–155. https://doi.org/10.1117/12.563905

  • G. Yabu, A Study of the Next Generation Semiconductor Compton Camera for Gamma-Ray Measurements in Physics Experiments. PhD thesis, The University of Tokyo (2022)

    Google Scholar 

  • G. Yabu, H. Yoneda, T. Orita, S. Takeda, P. Caradonna, T. Takahashi, S. Watanabe, F. Moriyama, Tomographic imaging by a Si/CdTe Compton camera for 111In and 131I radionuclides. IEEE Trans. Radiat. Plasma Med. Sci. 1 (2021). https://doi.org/10.1109/TRPMS.2021.3104665

  • H. Yoneda, S. Saito, S. Watanabe, H. Ikeda, T. Takahashi, Development of Si-CMOS hybrid detectors towards electron tracking based Compton imaging in semiconductor detectors. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 912, 269–273 (2018)

    ADS  Google Scholar 

  • H. Yoneda, H. Odaka, Y. Ichinohe, S. Takashima, T. Aramaki, K. Aoyama, J. Asaadi, L. Fabris, Y. Inoue, G. Karagiorgi, D. Khangulyan, M. Kimura, J. Leyva, R. Mukherjee, T. Nakasone, K. Perez, M. Sakurai, W. Seligman, M. Tanaka, N. Tsuji, K. Yorita, J. Zeng, Reconstruction of multiple Compton scattering events in MeV gamma-ray Compton telescopes using a physics-based probabilistic model. arXiv e-prints, art. arXiv:2107.01846 (2021)

    Google Scholar 

  • V. Zabalza, Naima: a python package for inference of relativistic particle energy distributions from observed nonthermal spectra. Proceedings of International Cosmic Ray Conference 2015 (2015), p. 922

    Google Scholar 

  • R. Zanin, H. Abdalla, H. Abe, S. Abe, A. Abusleme et al., CTA – the World’s largest ground-based gamma-ray observatory. PoS ICRC2021, 005 (2021). https://doi.org/10.22323/1.395.0005

  • A. Zoglauer, First Light for the Next Generation of Compton and Pair Telescopes. PhD thesis, Max-Planck-Institut für extraterrestrische Physik (2005)

    Google Scholar 

  • A. Zoglauer, S.E. Boggs, Application of neural networks to the identification of the Compton interaction sequence in Compton imagers, in 2007 IEEE Nuclear Science Symposium Conference Record, vol. 6 (2007), pp. 4436–4441. https://doi.org/10.1109/NSSMIC.2007.4437096

  • A. Zoglauer, S.E. Boggs, Application of an improved event reconstruction and imaging approach for Compton telescopes to Crab measurements by NCT and COMPTEL using MEGAlib, in American Astronomical Society, High Energy Astrohysics Division Meeting #13 (2013), p. 117.06

    Google Scholar 

  • A. Zoglauer, G. Kanbach, Doppler broadening as a lower limit to the angular resolution of next generation Compton telescopes, in Proceedings of SPIE, vol. 4851 (2003)

    Google Scholar 

  • A. Zoglauer, The Gamma AI team, Enhancing the event reconstruction pipeline of future combined Compton-scattering and pair-creation telescopes with deep learning. Bull. AAS 53(1) (2021). https://baas.aas.org/pub/2021n1i541p07

  • A. Zoglauer, R. Andritschke, F. Schopper, MEGAlib – The Medium Energy Gamma-ray Astronomy Library. New Astron. Rev. 50, 629–632 (2006)

    ADS  Google Scholar 

  • A. Zoglauer, S.E. Boggs, M. Galloway, M. Amman, P.N. Luke, R.M. Kippen, Design, implementation, and optimization of MEGAlib’s image reconstruction tool mimrec. Nuclear Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 652, 568–571 (2011)

    ADS  Google Scholar 

  • A. Zoglauer, T. Siegert, A. Lowell, B. Mochizuki, C. Kierans, C. Sleator, D.H. Hartmann, H. Lazar, H. Gulick, J. Beechert, J.M. Roberts, J.A. Tomsick, M.D. Leising, N. Pellegrini, S.E. Boggs, T.J. Brandt, COSI: From Calibrations and Observations to All-sky Images. arXiv e-prints, art. arXiv:2102.13158 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn Kierans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kierans, C., Takahashi, T., Kanbach, G. (2024). Compton Telescopes for Gamma-Ray Astrophysics. In: Bambi, C., Santangelo, A. (eds) Handbook of X-ray and Gamma-ray Astrophysics. Springer, Singapore. https://doi.org/10.1007/978-981-19-6960-7_46

Download citation

Publish with us

Policies and ethics