Skip to main content

Fast Radio Bursts

  • Reference work entry
  • First Online:
Handbook of X-ray and Gamma-ray Astrophysics
  • 21 Accesses

Abstract

The era of fast radio bursts (FRBs) was open in 2007, when a very bright radio pulse of unknown origin was discovered occasionally in the archival data of Parkes telescope. Over the past 15 years, this mysterious phenomenon has caught substantial attention among the scientific community and becomes one of the hottest topics in high-energy astrophysics. The total number of events has a dramatic increase to a few hundred recently, benefiting from new dedicated surveys and improved observational techniques. Our understanding of these bursts has been undergoing a revolutionary growth with observational breakthroughs announced consistently. In this chapter, we will give a comprehensive introduction of FRBs, including the latest progress. Starting from the basics, we will go through population study, inherent physical mechanism, and all the way to the application in cosmology. Plenty of open questions exist right now and there is more surprise to come in this active young field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • K. Aggarwal, Observational effects of banded repeating FRBs. ApJL 920(1), L18 (2021). https://doi.org/10.3847/2041-8213/ac2a3a, 2108.04474

  • S. Ai, H. Gao, B. Zhang, On the true fractions of repeating and nonrepeating fast radio burst sources. ApJL 906(1), L5 (2021). https://doi.org/10.3847/2041-8213/abcec9, 2007.02400

  • D. Alsop, J. Arons, Relativistic magnetosonic solitons with reflected particles in electron-positron plasmas. Phys. Fluids 31(4), 839–847 (1988). https://doi.org/10.1063/1.866765

    Article  ADS  Google Scholar 

  • E. Amato, J. Arons, Heating and nonthermal particle acceleration in relativistic, transverse magnetosonic shock waves in proton-electron-positron plasmas. ApJ 653(1), 325–338 (2006). https://doi.org/10.1086/508050, astro-ph/0609034

  • K.W. Bannister, A.T. Deller, C. Phillips, J.P. Macquart, J.X. Prochaska, N. Tejos, S.D. Ryder, E.M. Sadler, R.M. Shannon, S. Simha, C.K. Day, M. McQuinn, F.O. North-Hickey, S. Bhandari, W.R. Arcus, V.N. Bennert, J. Burchett, M. Bouwhuis, R. Dodson, R.D. Ekers, W. Farah, C. Flynn, C.W. James, M. Kerr, E. Lenc, E.K. Mahony, J. O’Meara, S. Osłowski, H. Qiu, T. Treu, V. U, T.J. Bateman, D.C.J. Bock, R.J. Bolton, A. Brown, J.D. Bunton, A.P. Chippendale, F.R. Cooray, T. Cornwell, N. Gupta, D.B. Hayman, M. Kesteven, B.S. Koribalski, A. MacLeod, N.M. McClure-Griffiths, S. Neuhold, R.P. Norris, M.A. Pilawa, R.Y. Qiao, J. Reynolds, D.N. Roxby, T.W. Shimwell, M.A. Voronkov, C.D. Wilson, A single fast radio burst localized to a massive galaxy at cosmological distance. Science 365(6453), 565–570 (2019). https://doi.org/10.1126/science.aaw5903, 1906.11476

  • A.M. Beloborodov, Blast waves from magnetar flares and fast radio bursts. ApJ 896(2), 142 (2020). https://doi.org/10.3847/1538-4357/ab83eb, 1908.07743

  • G. Benford, R. Buschauer, Coherent pulsar radio radiation by antenna mechanisms: general theory. MNRAS 179, 189–207 (1977). https://doi.org/10.1093/mnras/179.2.189

    Article  ADS  Google Scholar 

  • P. Beniamini, Z. Wadiasingh, B.D. Metzger, Periodicity in recurrent fast radio bursts and the origin of ultralong period magnetars. MNRAS 496(3), 3390–3401 (2020). https://doi.org/10.1093/mnras/staa1783, 2003.12509

  • P. Beniamini, P. Kumar, X.C. Ma, E. Quataert, MNRAS 502, 5134 (2021)

    Article  ADS  Google Scholar 

  • P. Beniamini, P. Kumar, R. Narayan, MNRAS 510, 4654 (2022)

    Article  ADS  Google Scholar 

  • A. Bera, S. Bhattacharyya, S. Bharadwaj, n.d.R. Bhat, J.N. Chengalur, On modelling the fast radio burst population and event rate predictions. MNRAS 457(3), 2530–2539 (2016). https://doi.org/10.1093/mnras/stw177, 1601.05410

  • S. Bhandari, E.F. Keane, E.D. Barr, A. Jameson, E. Petroff, S. Johnston, M. Bailes, n.d.R. Bhat, M. Burgay, S. Burke-Spolaor, M. Caleb, R.P. Eatough, C. Flynn, J.A. Green, F. Jankowski, M. Kramer, V.V. Krishnan, V. Morello, A. Possenti, B. Stappers, C. Tiburzi, W. van Straten, I. Andreoni, T. Butterley, P. Chandra, J. Cooke, A. Corongiu, D.M. Coward, V.S. Dhillon, R. Dodson, L.K. Hardy, E.J. Howell, P. Jaroenjittichai, A. Klotz, S.P. Littlefair, T.R. Marsh, M. Mickaliger, T. Muxlow, D. Perrodin, T. Pritchard, U. Sawangwit, T. Terai, N. Tominaga, P. Torne, T. Totani, A. Trois, D. Turpin, Y. Niino, R.W. Wilson, A. Albert, M. André, M. Anghinolfi, G. Anton, M. Ardid, J.J. Aubert, T. Avgitas, B. Baret, J. Barrios-Martí, S. Basa, B. Belhorma, V. Bertin, S. Biagi, R. Bormuth, S. Bourret, M.C. Bouwhuis, H. Brânzaş, R. Bruijn, J. Brunner, J. Busto, A. Capone, L. Caramete, J. Carr, S. Celli, R.C.E. Moursli, T. Chiarusi, M. Circella, J.A.B. Coelho, A. Coleiro, R. Coniglione, H. Costantini, P. Coyle, A. Creusot, A.F. Díaz, A. Deschamps, G. De Bonis, C. Distefano, I.D. Palma, A. Domi, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, I.E. Bojaddaini, N.E. Khayati, D. Elsässer, A. Enzenhöfer, A. Ettahiri, F. Fassi, I. Felis, L.A. Fusco, P. Gay, V. Giordano, H. Glotin, T. Gregoire, R. Gracia-Ruiz, K. Graf, S. Hallmann, H. van Haren, A.J. Heijboer, Y. Hello, J.J. Hernández-Rey, J. Hößl, J. Hofestädt, C. Hugon, G. Illuminati, C.W. James, M. de Jong, M. Jongen, M. Kadler, O. Kalekin, U. Katz, D. Kießling, A. Kouchner, M. Kreter, I. Kreykenbohm, V. Kulikovskiy, C. Lachaud, R. Lahmann, D. Lefèvre, E. Leonora, S. Loucatos, M. Marcelin, A. Margiotta, A. Marinelli, J.A. Martínez-Mora, R. Mele, K. Melis, T. Michael, P. Migliozzi, A. Moussa, S. Navas, E. Nezri, M. Organokov, G.E. Pǎvǎlaş, C. Pellegrino, C. Perrina, P. Piattelli, V. Popa, T. Pradier, L. Quinn, C. Racca, G. Riccobene, A. Sánchez-Losa, M. Saldaña, I. Salvadori, D.F.E. Samtleben, M. Sanguineti, P. Sapienza, F. Schüssler, C. Sieger, M. Spurio, T. Stolarczyk, M. Taiuti, Y. Tayalati, A. Trovato, D. Turpin, C. Tönnis, B. Vallage, V. Van Elewyck, F. Versari, D. Vivolo, A. Vizzocca, J. Wilms, J.D. Zornoza, J. Zúñiga, The survey for pulsars and extragalactic radio bursts – II. New FRB discoveries and their follow-up. MNRAS 475(2), 1427–1446 (2018). https://doi.org/10.1093/mnras/stx3074, 1711.08110

  • S. Bhandari, K.E. Heintz, K. Aggarwal, L. Marnoch, C.K. Day, J. Sydnor, S. Burke-Spolaor, C.J. Law, J. Xavier Prochaska, N. Tejos, K.W. Bannister, B.J. Butler, A.T. Deller, R.D. Ekers, C. Flynn, W.F. Fong, C.W. James, T.J.W. Lazio, R. Luo, E.K. Mahony, S.D. Ryder, E.M. Sadler, R.M. Shannon, J. Han, K. Lee, B. Zhang, Characterizing the fast radio burst host galaxy population and its connection to transients in the local and extragalactic universe. AJ 163(2), 69 (2022). https://doi.org/10.3847/1538-3881/ac3aec, 2108.01282

  • M. Bhardwaj, A.Y. Kirichenko, D. Michilli, Y.D. Mayya, V.M. Kaspi, B.M. Gaensler, M. Rahman, S.P. Tendulkar, E. Fonseca, A. Josephy, C. Leung, M. Merryfield, E. Petroff, Z. Pleunis, P. Sanghavi, P. Scholz, K. Shin, K.M. Smith, I.H. Stairs, A local universe host for the repeating fast radio burst FRB 20181030A. ApJL 919(2), L24 (2021). https://doi.org/10.3847/2041-8213/ac223b, 2108.12122

  • M. Bhattacharya, P. Kumar, Population modelling of FRBs from intrinsic properties (2019). arXiv e-prints arXiv:1902.10225, 1902.10225

    Google Scholar 

  • C.D. Bochenek, V. Ravi, K.V. Belov, G. Hallinan, J. Kocz, S.R. Kulkarni, D.L. McKenna, A fast radio burst associated with a Galactic magnetar. Nature 587(7832), 59–62 (2020). https://doi.org/10.1038/s41586-020-2872-x, 2005.10828

  • S. Burke-Spolaor, M. Bailes, R. Ekers, J.P. Macquart, F. Crawford III (2011) Radio bursts with extragalactic spectral characteristics show terrestrial origins. ApJ 727(1), 18 (2011). https://doi.org/10.1088/0004-637X/727/1/18, 1009.5392

  • M. Caleb, C. Flynn, M. Bailes, E.D. Barr, R.W. Hunstead, E.F. Keane, V. Ravi, W. van Straten, Are the distributions of fast radio burst properties consistent with a cosmological population? MNRAS 458(1), 708–717 (2016). https://doi.org/10.1093/mnras/stw175, 1512.02738

  • M. Caleb, E.F. Keane, W. van Straten, M. Kramer, J.P. Macquart, M. Bailes, E.D. Barr, n.d.R. Bhat, S. Bhandari, M. Burgay, W. Farah, A. Jameson, F. Jankowski, S. Johnston, E. Petroff, A. Possenti, B.W. Stappers, C. Tiburzi, V. Venkatraman Krishnan, The survey for pulsars and extragalactic radio bursts – III. Polarization properties of FRBs 160102 and 151230. MNRAS 478(2), 2046–2055 (2018). https://doi.org/10.1093/mnras/sty1137, 1804.09178

  • M. Caleb, B.W. Stappers, K. Rajwade, C. Flynn, Are all fast radio bursts repeating sources? MNRAS 484(4), 5500–5508 (2019). https://doi.org/10.1093/mnras/stz386, 1902.00272

  • A. Chaikova, D. Kostunin, S.B. Popov, Model-independent classification of events from the first CHIME/FRB Fast Radio Burst catalog (2022). arXiv e-prints arXiv:2202.10076, 2202.10076

    Google Scholar 

  • M.A. Chamma, F. Rajabi, C.M. Wyenberg, A. Mathews, M. Houde, Evidence of a shared spectro-temporal law between sources of repeating fast radio bursts. MNRAS 507(1), 246–260 (2021). https://doi.org/10.1093/mnras/stab2070, 2010.14041

  • S. Chatterjee, C.J. Law, R.S. Wharton, S. Burke-Spolaor, J.W.T. Hessels, G.C. Bower, J.M. Cordes, S.P. Tendulkar, C.G. Bassa, P. Demorest, B.J. Butler, A. Seymour, P. Scholz, M.W. Abruzzo, S. Bogdanov, V.M. Kaspi, A. Keimpema, T.J.W. Lazio, B. Marcote, M.A. McLaughlin, Z. Paragi, S.M. Ransom, M. Rupen, L.G. Spitler, H.J. van Langevelde, A direct localization of a fast radio burst and its host. Nature 541(7635), 58–61 (2017). https://doi.org/10.1038/nature20797, 1701.01098

  • W.C. Chen, Periodically repeating fast radio bursts: lense-thirring precession of a debris disk? PASJ 72(4), L8 (2020). https://doi.org/10.1093/pasj/psaa060, 2006.01552

  • A.F. Cheng, M.A. Ruderman, Bunching mechanism for coherent curvature radiation in pulsar magnetospheres. ApJ 212, 800–806 (1977). https://doi.org/10.1086/155105

    Article  ADS  Google Scholar 

  • Y. Cheng, G.Q. Zhang, F.Y. Wang, Statistical properties of magnetar bursts and FRB 121102. MNRAS 491(1), 1498–1505 (2020). https://doi.org/10.1093/mnras/stz3085, 1910.14201

  • CHIME/FRB Collaboration, M. Amiri, K. Bandura, M. Bhardwaj, P. Boubel, M.M. Boyce, P.J. Boyle, C. Brar, M. Burhanpurkar, T. Cassanelli, P. Chawla, J.F. Cliche, D. Cubranic, M. Deng, N. Denman, M. Dobbs, M. Fandino, E. Fonseca, B.M. Gaensler, A.J. Gilbert, A. Gill, U. Giri, D.C. Good, M. Halpern, D.S. Hanna, A.S. Hill, G. Hinshaw, C. Höfer, A. Josephy, V.M. Kaspi, T.L. Landecker, D.A. Lang, H.H. Lin, K.W. Masui, R. Mckinven, J. Mena-Parra, M. Merryfield, D. Michilli, N. Milutinovic, C. Moatti, A. Naidu, L.B. Newburgh, C. Ng, C. Patel, U. Pen, T. Pinsonneault-Marotte, Z. Pleunis, M. Rafiei-Ravandi, M. Rahman, S.M. Ransom, A. Renard, P. Scholz, J.R. Shaw, S.R. Siegel, K.M. Smith, I.H. Stairs, S.P. Tendulkar, I. Tretyakov, K. Vanderlinde, P. Yadav, A second source of repeating fast radio bursts. Nature 566(7743), 235–238 (2019a). https://doi.org/10.1038/s41586-018-0864-x, 1901.04525

  • CHIME/FRB Collaboration, M. Amiri, K. Bandura, M. Bhardwaj, P. Boubel, M.M. Boyce, P.J. Boyle, C. Brar, M. Burhanpurkar, P. Chawla, J.F. Cliche, D. Cubranic, M. Deng, N. Denman, M. Dobbs, M. Fandino, E. Fonseca, B.M. Gaensler, A.J. Gilbert, U. Giri, D.C. Good, M. Halpern, D. Hanna, A.S. Hill, G. Hinshaw, C. Höfer, A. Josephy, V.M. Kaspi, T.L. Landecker, D.A. Lang, K.W. Masui, R. Mckinven, J. Mena-Parra, M. Merryfield, N. Milutinovic, C. Moatti, A. Naidu, L.B. Newburgh, C. Ng, C. Patel, U. Pen, T. Pinsonneault-Marotte, Z. Pleunis, M. Rafiei-Ravandi, S.M. Ransom, A. Renard, P. Scholz, J.R. Shaw, S.R. Siegel, K.M. Smith, I.H. Stairs, S.P. Tendulkar, I. Tretyakov, K. Vanderlinde, P. Yadav, Observations of fast radio bursts at frequencies down to 400 megahertz. Nature 566(7743), 230–234 (2019b). https://doi.org/10.1038/s41586-018-0867-7, 1901.04524

  • CHIME/FRB Collaboration, B.C. Andersen, K. Bandura, M. Bhardwaj, P. Boubel, M.M. Boyce, P.J. Boyle, C. Brar, T. Cassanelli, P. Chawla, D. Cubranic, M. Deng, M. Dobbs, M. Fandino, E. Fonseca, B.M. Gaensler, A.J. Gilbert, U. Giri, D.C. Good, M. Halpern, A.S. Hill, G. Hinshaw, C. Höfer, A. Josephy, V.M. Kaspi, R. Kothes, T.L. Landecker, D.A. Lang, D.Z. Li, H.H. Lin, K.W. Masui, J. Mena-Parra, M. Merryfield, R. Mckinven, D. Michilli, N. Milutinovic, A. Naidu, L.B. Newburgh, C. Ng, C. Patel, U. Pen, T. Pinsonneault-Marotte, Z. Pleunis, M. Rafiei-Ravandi, M. Rahman, S.M. Ransom, A. Renard, P. Scholz, S.R. Siegel, S. Singh, K.M. Smith, I.H. Stairs, S.P. Tendulkar, I. Tretyakov, K. Vanderlinde, P. Yadav, A.V. Zwaniga, CHIME/FRB discovery of eight new repeating fast radio burst sources. ApJL 885(1), L24 (2019c). https://doi.org/10.3847/2041-8213/ab4a80, 1908.03507

  • CHIME/FRB Collaboration, M. Amiri, B.C. Andersen, K.M. Band ura, M. Bhardwaj, P.J. Boyle, C. Brar, P. Chawla, T. Chen, J.F. Cliche, D. Cubranic, M. Deng, N.T. Denman, M. Dobbs, F.Q. Dong, M. Fand ino, E. Fonseca, B.M. Gaensler, U. Giri, D.C. Good, M. Halpern, J.W.T. Hessels, A.S. Hill, C. Höfer, A. Josephy, J.W. Kania, R. Karuppusamy, V.M. Kaspi, A. Keimpema, F. Kirsten, T.L. Landecker, D.A. Lang, C. Leung, D.Z. Li, H.H. Lin, B. Marcote, K.W. Masui, R. McKinven, J. Mena-Parra, M. Merryfield, D. Michilli, N. Milutinovic, A. Mirhosseini, A. Naidu, L.B. Newburgh, C. Ng, K. Nimmo, Z. Paragi, C. Patel, U.L. Pen, T. Pinsonneault-Marotte, Z. Pleunis, M. Rafiei-Ravandi, M. Rahman, S.M. Ransom, A. Renard, P. Sanghavi, P. Scholz, J.R. Shaw, K. Shin, S.R. Siegel, S. Singh, R.J. Smegal, K.M. Smith, I.H. Stairs, S.P. Tendulkar, I. Tretyakov, K. Vanderlinde, H. Wang, X. Wang, D. Wulf, P.Yadav, A.V. Zwaniga, Periodic activity from a fast radio burst source. Nature 582(7812), 351–355 (2020a). https://doi.org/10.1038/s41586-020-2398-2, 2001.10275

  • CHIME/FRB Collaboration, B.Â.C. Andersen, K.Â.M. Band ura, M. Bhardwaj, A. Bij, M.Â.M. Boyce, P.Â.J. Boyle, C. Brar, T. Cassanelli, P. Chawla, T. Chen, J.F. Cliche, A. Cook, D. Cubranic, A.Â.P. Curtin, N.Â.T. Denman, M. Dobbs, F.Â.Q. Dong, M. Fand ino, E. Fonseca, B.Â.M. Gaensler, U. Giri, D.Â.C. Good, M. Halpern, A.Â.S. Hill, G.Â.F. Hinshaw, C. Höfer, A. Josephy, J.Â.W. Kania, V.Â.M. Kaspi T.Â.L. Land ecker, C. Leung, D.Â.Z. Li, H.H. Lin, K.Â.W. Masui, R. McKinven, J. Mena-Parra, M. Merryfield, B.Â.W. Meyers, D. Michilli, N. Milutinovic, A. Mirhosseini, M. Münchmeyer, A. Naidu, L.Â.B. Newburgh, C. Ng, C. Patel, U.L. Pen, T. Pinsonneault-Marotte, Z. Pleunis, B.Â.M. Quine, M. Rafiei-Ravandi, M. Rahman, S.Â.M. Ransom, A. Renard, P. Sanghavi, P. Scholz, J.Â.R. Shaw, K. Shin, S.Â.R. Siegel, S. Singh, R.Â.J. Smegal, K.Â.M. Smith, I.Â.H. Stairs, C.Â.M. Tan, S.Â.P. Tendulkar, I. Tretyakov, K. Vanderlinde, H. Wang, D. Wulf, A.Â.V. Zwaniga, A bright millisecond-duration radio burst from a Galactic magnetar. Nature 587(7832), 54–58 (2020b). https://doi.org/10.1038/s41586-020-2863-y

  • H. Cho, R.M. Shannon, A.T. Deller, I.S. Morrison, R.D. Ekers, K.W. Bannister, W. Farah, H. Qiu, M.W. Sammons, M. Bailes, S. Bhandari, C.K. Day, C.W. James, C.J. Phillips, J.X. Prochaska, J. Tuthill, Spectropolarimetric analysis of FRB 181112 at microsecond resolution: implications for fast radio burst emission mechanism. ApJL 891(2), L38 (2020). https://doi.org/10.3847/2041-8213/ab7824, 2002.12539

  • A.W. Clegg, A.L. Fey, T.J.W. Lazio, The Gaussian plasma lens in astrophysics: refraction. ApJ 496(1), 253–266 (1998). https://doi.org/10.1086/305344, astro-ph/9709249

  • L. Connor, Interpreting the distributions of FRB observables. MNRAS 487(4), 5753–5763 (2019). https://doi.org/10.1093/mnras/stz1666, 1905.00755

  • L. Connor, E. Petroff, On detecting repetition from fast radio bursts. ApJL 861(1), L1 (2018). https://doi.org/10.3847/2041-8213/aacd02, 1804.00896

  • J.M. Cordes, S. Chatterjee, Fast radio bursts: an extragalactic enigma. ARA&A 57, 417–465 (2019). https://doi.org/10.1146/annurev-astro-091918-104501, 1906.05878

  • J.M. Cordes, T.J.W. Lazio, NE2001.I. a new model for the galactic distribution of free electrons and its fluctuations (2002). arXiv e-prints astro-ph/0207156, astro-ph/0207156

    Google Scholar 

  • J.M. Cordes, M.A. McLaughlin, Searches for fast radio transients. ApJ 596(2), 1142–1154 (2003). https://doi.org/10.1086/378231, astro-ph/0304364

  • J.M. Cordes, B.J. Rickett, Diffractive interstellar scintillation timescales and velocities. ApJ 507(2), 846–860 (1998). https://doi.org/10.1086/306358

    Article  ADS  Google Scholar 

  • J.M. Cordes, I. Wasserman, J.W.T. Hessels, T.J.W. Lazio, S. Chatterjee, R.S. Wharton, Lensing of fast radio bursts by plasma structures in host galaxies. ApJ 842(1), 35 (2017). https://doi.org/10.3847/1538-4357/aa74da, 1703.06580

  • M. Cruces, L.G. Spitler, P. Scholz, R. Lynch, A. Seymour, J.W.T. Hessels, Gouiffés C, G.H. Hilmarsson, M. Kramer, S. Munjal, Repeating behaviour of FRB 121102: periodicity, waiting times, and energy distribution. MNRAS 500(1), 448–463 (2021). https://doi.org/10.1093/mnras/staa3223, 2008.03461

  • Z.G. Dai, J.S. Wang, X.F. Wu, Y.F. Huang, Repeating fast radio bursts from highly magnetized pulsars traveling through asteroid belts. ApJ 829(1), 27 (2016). https://doi.org/10.3847/0004-637X/829/1/27, 1603.08207

  • C.K. Day, A.T. Deller, R.M. Shannon, H. Qiu, K.W. Bannister, S. Bhandari, R. Ekers, C. Flynn, C.W. James, J.P. Macquart, E.K. Mahony, C.J. Phillips, J.X. Prochaska, High time resolution and polarisation properties of ASKAP-localised fast radio bursts. MNRAS (2020). https://doi.org/10.1093/mnras/staa2138, 2005.13162

  • C.M. Deng, J.J. Wei, X.F. Wu, The energy function and cosmic formation rate of fast radio bursts. J. High Energ. Astrophys. 23, 1–5 (2019). https://doi.org/10.1016/j.jheap.2019.05.001, 1811.09483

  • W. Deng, B. Zhang, Cosmological implications of fast radio burst/gamma-ray burst associations. ApJL 783(2), L35 (2014). https://doi.org/10.1088/2041-8205/783/2/L35, 1401.0059

  • X. Er, Y.P. Yang, A. Rogers, The effects of plasma lensing on the inferred dispersion measures of fast radiobursts. ApJ 889(2), 158 (2020). https://doi.org/10.3847/1538-4357/ab66b1, 2001.02100

  • Y. Feng, D. Li, Y.P. Yang, Y. Zhang, W. Zhu, B. Zhang, W. Lu, P. Wang, S. Dai, R.S. Lynch, J. Yao, J. Jiang, J. Niu, D. Zhou, H. Xu, C. Miao, C. Niu, L. Meng, L. Qian, C.W. Tsai, B. Wang, M. Xue, Y. Yue, M. Yuan, S. Zhang, L. Zhang, Frequency dependent polarization of repeating fast radio bursts – implications for their origin (2022). arXiv e-prints arXiv:2202.09601, 2202.09601

    Google Scholar 

  • A. Fialkov, A. Loeb, D.R. Lorimer, Enhanced rates of fast radio bursts from galaxy clusters. ApJ 863(2), 132 (2018). https://doi.org/10.3847/1538-4357/aad196, 1711.04396

  • E. Fonseca, B.C. Andersen, M. Bhardwaj, P. Chawla, D.C. Good, A. Josephy, V.M. Kaspi, K.W. Masui, R. Mckinven, D. Michilli, Z. Pleunis, K. Shin, S.P. Tendulkar, K.M. Bandura, P.J. Boyle, C. Brar, T. Cassanelli, D. Cubranic, M. Dobbs, F.Q. Dong, B.M. Gaensler, G. Hinshaw, T.L. Land ecker, C. Leung, D.Z. Li, H.H. Lin, J. Mena-Parra, M. Merryfield, A. Naidu, C. Ng, C. Patel, U. Pen, M. Rafiei-Ravandi, M. Rahman, S.M. Ransom, P. Scholz, K.M. Smith, I.H. Stairs, K. Vanderlinde, P. Yadav, A.V. Zwaniga AV Nine new repeating fast radio burst sources from CHIME/FRB. ApJL 891(1), L6 (2020). https://doi.org/10.3847/2041-8213/ab7208, 2001.03595

  • V. Gajjar, A.P.V. Siemion, D.C. Price, C.J. Law, D. Michilli, J.W.T. Hessels, S. Chatterjee, A.M. Archibald, G.C. Bower, C. Brinkman, S. Burke-Spolaor, J.M. Cordes, S. Croft, J.E. Enriquez, G. Foster, N. Gizani, G. Hellbourg, H. Isaacson, V.M. Kaspi, T.J.W. Lazio, M. Lebofsky, R.S. Lynch, D. MacMahon, M.A. McLaughlin, S.M. Ransom, P. Scholz, A. Seymour, L.G. Spitler, S.P. Tendulkar, D. Werthimer, Y.G. Zhang, Highest frequency detection of FRB 121102 at 4–8 GHz using the breakthrough listen digital backend at the green bank telescope. ApJ 863(1), 2 (2018). https://doi.org/10.3847/1538-4357/aad005, 1804.04101

  • Y.A. Gallant, M. Hoshino, A.B. Langdon, J. Arons, C.E. Max, Relativistic, perpendicular shocks in electron-positron plasmas. ApJ 391, 73 (1992). https://doi.org/10.1086/171326

    Article  ADS  Google Scholar 

  • D.W. Gardenier, J. van Leeuwen, Multi-dimensional population modelling using frbpoppy: magnetars can produce the observed fast radio burst sky. A&A 651, A63 (2021). https://doi.org/10.1051/0004-6361/202040119, 2012.06396

  • D.W. Gardenier, L. Connor, J. van Leeuwen, L.C. Oostrum, E. Petroff, Synthesising the repeating FRB population using frbpoppy. A&A 647, A30 (2021). https://doi.org/10.1051/0004-6361/202039626, 2012.02460

  • J. Gil, Y. Lyubarsky, G.I. Melikidze, Curvature radiation in pulsar magnetospheric plasma. ApJ 600(2), 872–882 (2004). https://doi.org/10.1086/379972, astro-ph/0310621

  • P. Goldreich, W.H. Julian, Pulsar electrodynamics. ApJ 157, 869 (1969). https://doi.org/10.1086/150119

    Article  ADS  Google Scholar 

  • K. Gourdji, D. Michilli, L.G. Spitler, J.W.T. Hessels, A. Seymour, J.M. Cordes, S. Chatterjee, A sample of low-energy bursts from FRB 121102. ApJL 877(2), L19 (2019). https://doi.org/10.3847/2041-8213/ab1f8a, 1903.02249

  • E. GöǧüŞ, P.M. Woods, C. Kouveliotou, J. van Paradijs, M.S. Briggs, R.C. Duncan, C. Thompson, Statistical properties of SGR 1900+14 bursts. ApJL 526(2), L93–L96 (1999). https://doi.org/10.1086/312380, astro-ph/9910062

  • E. Göǧüş, P.M. Woods, C. Kouveliotou, J. van Paradijs, M.S. Briggs, R.C. Duncan, C. Thompson, Statistical properties of SGR 1806-20 bursts. ApJL 532(2), L121–L124 (2000). https://doi.org/10.1086/312583, astro-ph/0002181

  • W.M. Gu, T. Yi, T. Liu, A neutron star-white dwarf binary model for periodically active fast radio burst sources. MNRAS 497(2), 1543–1546 (2020). https://doi.org/10.1093/mnras/staa1914, 2002.10478

  • S. Hagstotz, R. Reischke, R. Lilow, A new measurement of the Hubble constant using fast radio bursts. MNRAS 511(1), 662–667 (2022). https://doi.org/10.1093/mnras/stac077, 2104.04538

  • J.W.T. Hessels, L.G. Spitler, A.D. Seymour, J.M. Cordes, D. Michilli, R.S. Lynch, K. Gourdji, A.M. Archibald, C.G. Bassa, G.C. Bower, S. Chatterjee, L. Connor, F. Crawford, J.S. Deneva, V. Gajjar, V.M. Kaspi, A. Keimpema, C.J. Law, B. Marcote, M.A. McLaughlin, Z. Paragi, E. Petroff, S.M. Ransom, P. Scholz, B.W. Stappers, S.P. Tendulkar, FRB 121102 bursts show complex time-frequency structure. ApJL 876(2), L23 (2019). https://doi.org/10.3847/2041-8213/ab13ae, 1811.10748

  • G.H. Hilmarsson, D. Michilli, L.G. Spitler, R.S. Wharton, P. Demorest, G. Desvignes, K. Gourdji, S. Hackstein, J.W.T. Hessels, K. Nimmo, A.D. Seymour, M. Kramer, R. Mckinven, Rotation measure evolution of the repeating fast radio burst source FRB 121102. ApJL 908(1), L10 (2021). https://doi.org/10.3847/2041-8213/abdec0, 2009.12135

  • M. Hoshino, J. Arons, Preferential positron heating and acceleration by synchrotron maser instabilities in relativistic positron-electron-proton plasmas. Phys. Fluids B 3(3), 818–833 (1991). https://doi.org/10.1063/1.859877

    Article  ADS  Google Scholar 

  • A.W. Hotan, M. Bailes, S.M. Ord, PSR J0737-3039A: baseband timing and polarimetry. MNRAS 362(4), 1267–1272 (2005). https://doi.org/10.1111/j.1365-2966.2005.09389.x

    Article  ADS  Google Scholar 

  • K. Ioka, Fast radio burst breakouts from magnetar burst fireballs. ApJL 904(2), L15 (2020). https://doi.org/10.3847/2041-8213/abc6a3, 2008.01114

  • K. Ioka, B. Zhang, A binary comb model for periodic fast radio bursts. ApJL 893(1), L26 (2020). https://doi.org/10.3847/2041-8213/ab83fb, 2002.08297

  • J.N. Jahns, L.G. Spitler, K. Nimmo, D.M. Hewitt, M.P. Snelders, A. Seymour, J.W.T. Hessels, K. Gourdji, D. Michilli, G.H. Hilmarsson, The FRB 20121102A November rain in 2018 observed with the arecibo telescope (2022). arXiv e-prints arXiv:2202.05705, 2202.05705

    Google Scholar 

  • C.W. James, R.D. Ekers, J.P. Macquart, K.W. Bannister, R.M. Shannon, The slope of the source-count distribution for fast radio bursts. MNRAS 483(1), 1342–1353 (2019). https://doi.org/10.1093/mnras/sty3031, 1810.04357

  • A. Kaganovich, Y. Lyubarsky, Curvature-drift instability fails to generate pulsar radio emission. ApJ 721(2), 1164–1173 (2010). https://doi.org/10.1088/0004-637X/721/2/1164, 1008.4922

  • J.I. Katz, Fast radio bursts. Prog. Part. Nucl. Phys. 103, 1–18 (2018). https://doi.org/10.1016/j.ppnp.2018.07.001, 1804.09092

  • J.I. Katz, FRB 190520B – an FRB in a young supernova remnant? MNRAS 510(1), L42–L44 (2022). https://doi.org/10.1093/mnrasl/slab128, 2110.10847

  • K. Kashiyama, K. Murase, ApJL 839, L3 (2017)

    Article  ADS  Google Scholar 

  • C.D. Kilpatrick, J.N. Burchett, D.O. Jones, B. Margalit, R. McMillan, W.F. Fong, K.E. Heintz, N. Tejos, A.R. Escorial, Deep optical observations contemporaneous with emission from the periodic FRB 180916.J0158+65. ApJL 907(1), L3 (2021). https://doi.org/10.3847/2041-8213/abd560, 2011.07561

  • F. Kirsten, B. Marcote, K. Nimmo, J.W.T. Hessels, M. Bhardwaj, S.P. Tendulkar, A. Keimpema, J. Yang, M.P. Snelders, P. Scholz, A.B. Pearlman, C.J. Law, W.M. Peters, M. Giroletti, Z. Paragi, C. Bassa, D.M. Hewitt, U. Bach, V. Bezrukovs, M. Burgay, S.T. Buttaccio, J.E. Conway, A. Corongiu, R. Feiler, Forssén O, M.P. Gawroński, R. Karuppusamy, M.A. Kharinov, M. Lindqvist, G. Maccaferri, A. Melnikov, O.S. Ould-Boukattine, A. Possenti, G. Surcis, N. Wang, J. Yuan, K. Aggarwal, R. Anna-Thomas, G.C. Bower, R. Blaauw, S. Burke-Spolaor, T. Cassanelli, T.E. Clarke, E. Fonseca, B.M. Gaensler, A. Gopinath, V.M. Kaspi, N. Kassim, T.J.W. Lazio, C. Leung, D.Z. Li, H.H. Lin, K.W. Masui, R. Mckinven, D. Michilli, A.G. Mikhailov, C. Ng, A. Orbidans, U.L. Pen, E. Petroff, M. Rahman, S.M. Ransom, K. Shin, K.M. Smith, I.H. Stairs, W. Vlemmings, A repeating fast radio burst source in a globular cluster. Nature 602(7898), 585–589 (2022). https://doi.org/10.1038/s41586-021-04354-w, 2105.11445

  • P. Kumar, Ž. Bošnjak, FRB coherent emission from decay of Alfvén waves. MNRAS 494(2), 2385–2395 (2020). https://doi.org/10.1093/mnras/staa774, 2004.00644

  • P. Kumar, W. Lu, M. Bhattacharya, Fast radio burst source properties and curvature radiation model. MNRAS 468(3), 2726–2739 (2017). https://doi.org/10.1093/mnras/stx665, 1703.06139

  • C.J. Law, M.W. Abruzzo, C.G. Bassa, G.C. Bower, S. Burke-Spolaor, B.J. Butler, T. Cantwell, S.H. Carey, S. Chatterjee, J.M. Cordes, P. Demorest, J. Dowell, R. Fender, K. Gourdji, K. Grainge, J.W.T. Hessels, J. Hickish, V.M. Kaspi, T.J.W. Lazio, M.A. McLaughlin, D. Michilli, K. Mooley, Y.C. Perrott, S.M. Ransom, N. Razavi-Ghods, M. Rupen, A. Scaife, P. Scott, P. Scholz, A. Seymour, L.G. Spitler, K. Stovall, S.P. Tendulkar, D. Titterington, R.S. Wharton, P.K.G. Williams, A multi-telescope campaign on FRB 121102: implications for the FRB population. ApJ 850(1), 76 (2017). https://doi.org/10.3847/1538-4357/aa9700, 1705.07553

  • E. Lawrence, S. Vander Wiel, C. Law, S. Burke Spolaor, G.C. Bower, The nonhomogeneous poisson process for fast radio burst rates. AJ 154(3), 117 (2017). https://doi.org/10.3847/1538-3881/aa844e, 1611.00458

  • Y. Levin, A.M. Beloborodov, A. Bransgrove, Precessing flaring magnetar as a source of repeating FRB 180916.J0158+65. ApJL 895(2), L30 (2020). https://doi.org/10.3847/2041-8213/ab8c4c, 2002.04595

  • Z.X. Li, H. Gao, X.H. Ding, G.J. Wang, B. Zhang, Strongly lensed repeating fast radio bursts as precision probes of the universe. Nat. Commun. 9, 3833 (2018). https://doi.org/10.1038/s41467-018-06303-0, 1708.06357

  • Q.C. Li, Y.P. Yang, Z.G. Dai, Persistent radio emission from synchrotron heating by a repeating fast radio burst source in a nebula. ApJ 896(1), 71 (2020). https://doi.org/10.3847/1538-4357/ab8db8, 2004.12516

  • C.K. Li, L. Lin, S.L. Xiong, M.Y. Ge, X.B. Li, T.P. Li, F.J. Lu, S.N. Zhang, Y.L. Tuo, Y. Nang, B. Zhang, S. Xiao, Y. Chen, L.M. Song, Y.P. Xu, C.Z. Liu, S.M. Jia, X.L. Cao, J.L. Qu, S. Zhang, Y.D. Gu, J.Y. Liao, X.F. Zhao, Y. Tan, J.Y. Nie, H.S. Zhao, S.J. Zheng, Y.G. Zheng, Q. Luo, C. Cai, B. Li, W.C. Xue, Q.C. Bu, Z. Chang, G. Chen, L. Chen, T.X. Chen, Y.B. Chen, Y.P. Chen, W. Cui, W.W. Cui, J.K. Deng, Y.W. Dong, Y.Y. Du, M.X. Fu, G.H. Gao, H. Gao, M. Gao, Y.D. Gu, J. Guan, C.C. Guo, D.W. Han, Y. Huang, J. Huo, L.H. Jiang, W.C. Jiang, J. Jin, Y.J. Jin, L.D. Kong, G. Li, M.S. Li, W. Li, X. Li, X.F. Li, Y.G. Li, Z.W. Li, X.H. Liang, B.S. Liu, G.Q. Liu, H.W. Liu, X.J. Liu, Y.N. Liu, B. Lu, X.F. Lu, T. Luo, X. Ma, B. Meng, G. Ou, N. Sai, R.C. Shang, X.Y. Song, L. Sun, L. Tao, C. Wang, G.F. Wang, J. Wang, W.S. Wang, Y.S. Wang, X.Y. Wen, B.B. Wu, B.Y. Wu, M. Wu, G.C. Xiao, H. Xu, J.W. Yang, S. Yang, Y.J. Yang, Y.J. Yang, Q.B. Yi, Q.Q. Yin, Y. You, A.M. Zhang, C.M. Zhang, F. Zhang, H.M. Zhang, J. Zhang, T. Zhang, W. Zhang, W.C. Zhang, W.Z. Zhang, Y. Zhang, Y. Zhang, Y.F. Zhang, Y.J. Zhang, Z. Zhang, Z. Zhang, Z.L. Zhang, D.K. Zhou, J.F. Zhou, Y. Zhu, Y.X. Zhu, R.L. Zhuang, HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428. Nat. Astron. 5, 378–384 (2021a). https://doi.org/10.1038/s41550-021-01302-6, 2005.11071

  • D. Li, P. Wang, W.W. Zhu, B. Zhang, X.X. Zhang, R. Duan, Y.K. Zhang, Y. Feng, N.Y. Tang, S. Chatterjee, J.M. Cordes, M. Cruces, S. Dai, V. Gajjar, G. Hobbs, C. Jin, M. Kramer, D.R. Lorimer, C.C. Miao, C.H. Niu, J.R. Niu, Z.C. Pan, L. Qian, L. Spitler, D. Werthimer, G.Q. Zhang, F.Y. Wang, X.Y. Xie, Y.L. Yue, L. Zhang, Q.J. Zhi, Y. Zhu, A bimodal burst energy distribution of a repeating fast radio burst source. Nature 598(7880), 267–271 (2021b). https://doi.org/10.1038/s41586-021-03878-5, 2107.08205

  • Q.C. Li, Y.P. Yang, F.Y. Wang, K. Xu, Y. Shao, Z.N. Liu, Z.G. Dai, Periodic activities of repeating fast radio bursts from Be/X-Ray binary systems. ApJL 918(1), L5 (2021c). https://doi.org/10.3847/2041-8213/ac1922, 2108.00350

  • N. Locatelli, M. Ronchi, G. Ghirlanda, G. Ghisellini, The luminosity-volume test for cosmological fast radio bursts. A&A 625, A109 (2019). https://doi.org/10.1051/0004-6361/201834722, 1811.10641

  • D.R. Lorimer, M. Bailes, M.A. McLaughlin, D.J. Narkevic, F. Crawford, A bright millisecond radio burst of extragalactic origin. Science 318(5851), 777 (2007). https://doi.org/10.1126/science.1147532, 0709.4301

  • W. Lu, A.L. Piro, Implications from ASKAP fast radio burst statistics. ApJ 883(1), 40 (2019). https://doi.org/10.3847/1538-4357/ab3796, 1903.00014

  • W. Lu, P. Kumar, B. Zhang, A unified picture of Galactic and cosmological fast radio bursts. MNRAS 498(1), 1397–1405 (2020a). https://doi.org/10.1093/mnras/staa2450, 2005.06736

  • W. Lu, A.L. Piro, E. Waxman, Implications of Canadian hydrogen intensity mapping experiment repeating fast radio bursts. MNRAS 498(2), 1973–1982 (2020b). https://doi.org/10.1093/mnras/staa2397, 2003.12581

  • W. Lu, P. Beniamini, P. Kumar, Implications of a rapidly varying FRB in a globular cluster of M81. MNRAS 510(2), 1867–1879 (2022). https://doi.org/10.1093/mnras/stab3500, 2107.04059

  • R. Luo, K. Lee, D.R. Lorimer, B. Zhang, On the normalized FRB luminosity function. MNRAS 481(2), 2320–2337 (2018). https://doi.org/10.1093/mnras/sty2364, 1808.09929

  • R. Luo, Y. Men, K. Lee, W. Wang, D.R. Lorimer, B. Zhang, On the FRB luminosity function – II. Event rate density. MNRAS 494(1), 665–679 (2020a). https://doi.org/10.1093/mnras/staa704, 2003.04848

  • R. Luo, B.J. Wang, Y.P. Men, C.F. Zhang, J.C. Jiang, H. Xu, W.Y. Wang, H.J. Lee, J.L. Han, B. Zhang, R.N. Caballero, M.Z. Chen, X.L. Chen, H.Q. Gan, Y.J. Guo, L.F. Hao, Y.X. Huang, P. Jiang, H. Li, J. Li, Z.X. Li, J.T. Luo, J. Pan, X. Pei, L. Qian, J.H. Sun, M. Wang, N. Wang, Z.G. Wen, R.X. Xu, Y.H. Xu, J. Yan, W.M. Yan, D.J. Yu, J.P. Yuan, S.B. Zhang, Y. Zhu, Diverse polarization angle swings from a repeating fast radio burst source. Nature 586(7831), 693–696 (2020b). https://doi.org/10.1038/s41586-020-2827-2, 2011.00171

  • F. Lyu, Y.Z. Meng, Z.F. Tang, Y. Li, J.J. Wei, J.J. Geng, L. Lin, C.M. Deng, X.F. Wu, A comparison between repeating bursts of FRB 121102 and giant pulses from Crab pulsar and its applications. Front. Phys. 16(2), 24503 (2021). https://doi.org/10.1007/s11467-020-1039-4, 2012.07303

  • Y. Lyubarsky, Fast radio bursts from reconnection in a magnetar magnetosphere. ApJ 897(1), 1 (2020). https://doi.org/10.3847/1538-4357/ab97b5, 2001.02007

  • M. Lyutikov, Coherent emission in pulsars, magnetars, and fast radio bursts: reconnection-driven free electron laser. ApJ 922(2), 166 (2021). https://doi.org/10.3847/1538-4357/ac1b32, 2102.07010

  • M. Lyutikov, S. Popov, Fast radio bursts from reconnection events in magnetar magnetospheres (2020). arXiv e-prints arXiv:2005.05093, 2005.05093

    Google Scholar 

  • M. Lyutikov, M.V. Barkov, D. Giannios, FRB periodicity: mild pulsars in tight O/B-star binaries. ApJL 893(2), L39 (2020). https://doi.org/10.3847/2041-8213/ab87a4, 2002.01920

  • J.P. Macquart, R.D. Ekers, Fast radio burst event rate counts - I. Interpreting the observations. MNRAS 474(2), 1900–1908 (2018a). https://doi.org/10.1093/mnras/stx2825, 1710.11493

  • J.P. Macquart, R.D. Ekers, FRB event rate counts – II. Fluence, redshift, and dispersion measure distributions. MNRAS 480(3), 4211–4230 (2018b). https://doi.org/10.1093/mnras/sty2083, 1808.00908

  • J.P. Macquart, R.D. Ekers, I. Feain, Johnston-Hollitt M, On the reliability of polarization estimation using rotation measure synthesis. ApJ 750(2), 139 (2012). https://doi.org/10.1088/0004-637X/750/2/139, 1203.2706

  • J.P. Macquart, J.X. Prochaska, M. McQuinn, K.W. Bannister, S. Bhandari, C.K. Day, A.T. Deller, R.D. Ekers, C.W. James, L. Marnoch, S. Osłowski, C. Phillips, S.D. Ryder, D.R. Scott, R.M. Shannon, N. Tejos, A census of baryons in the Universe from localized fast radio bursts. Nature 581(7809), 391–395 (2020). https://doi.org/10.1038/s41586-020-2300-2, 2005.13161

  • B. Marcote, Z. Paragi, J.W.T. Hessels, A. Keimpema, H.J. van Langevelde, Y. Huang, C.G. Bassa, S. Bogdanov, G.C. Bower, S. Burke-Spolaor, B.J. Butler, R.M. Campbell, S. Chatterjee, J.M. Cordes, P. Demorest, M.A. Garrett, T. Ghosh, V.M. Kaspi, C.J. Law, T.J.W. Lazio, M.A. McLaughlin, S.M. Ransom, C.J. Salter, P. Scholz, A. Seymour, A. Siemion, L.G. Spitler, S.P. Tendulkar, R.S. Wharton, The repeating fast radio burst FRB 121102 as seen on milliarcsecond angular scales. ApJL 834(2), L8 (2017). https://doi.org/10.3847/2041-8213/834/2/L8, 1701.01099

  • B. Margalit, B.D. Metzger, A concordance picture of FRB 121102 as a flaring magnetar embedded in a magnetized ion-electron wind nebula. ApJL 868(1), L4 (2018). https://doi.org/10.3847/2041-8213/aaedad, 1808.09969

  • B. Margalit, P. Beniamini, N. Sridhar, B.D. Metzger, Implications of a fast radio burst from a galactic magnetar. ApJL 899(2), L27 (2020). https://doi.org/10.3847/2041-8213/abac57, 2005.05283

  • M. McQuinn, Locating the “Missing” baryons with extragalactic dispersion measure estimates. ApJL 780(2), L33 (2014). https://doi.org/10.1088/2041-8205/780/2/L33, 1309.4451

  • D.B. Melrose, Collective plasma radiation processes. ARA&A 29, 31–57 (1991). https://doi.org/10.1146/annurev.aa.29.090191.000335

    Article  ADS  Google Scholar 

  • D.B. Melrose, Coherent emission mechanisms in astrophysical plasmas. Rev. Mod. Plasma Phys. 1(1), 5 (2017). https://doi.org/10.1007/s41614-017-0007-0, 1707.02009

  • S. Mereghetti, V. Savchenko, C. Ferrigno, D. Götz, M. Rigoselli, A. Tiengo, A. Bazzano, E. Bozzo, A. Coleiro, T.J.L. Courvoisier, M. Doyle, A. Goldwurm, L. Hanlon, E. Jourdain, A.V. Kienlin, A. Lutovinov, A. Martin-Carrillo, S. Molkov, L. Natalucci, F. Onori, F. Panessa, J. Rodi, J. Rodriguez, C. Sánchez-Fernández, R. Sunyaev, P. Ubertini, INTEGRAL discovery of a burst with associated radio emission from the magnetar SGR 1935+2154. ApJL 898(2), L29 (2020). https://doi.org/10.3847/2041-8213/aba2cf, 2005.06335

  • B.D. Metzger, B. Margalit, L. Sironi, Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. MNRAS 485(3), 4091–4106 (2019). https://doi.org/10.1093/mnras/stz700, 1902.01866

  • D. Michilli, A. Seymour, J.W.T. Hessels, L.G. Spitler, V. Gajjar, A.M. Archibald, G.C. Bower, S. Chatterjee, J.M. Cordes, K. Gourdji, G.H. Heald, Kaspi VM, C.J. Law, C. Sobey, E.A.K. Adams, C.G. Bassa, S. Bogdanov, C. Brinkman, P. Demorest, F. Fernandez, G. Hellbourg, T.J.W. Lazio, R.S. Lynch, N. Maddox, B. Marcote, M.A. McLaughlin, Z. Paragi, S.M. Ransom, P. Scholz, A.P.V. Siemion, S.P. Tendulkar, P. van Rooy, R.S. Wharton, D. Whitlow, An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 553(7687), 182–185 (2018). https://doi.org/10.1038/nature25149, 1801.03965

  • A. Moroianu, L.Q. Wen, C.W. James, S.K. Ai, M. Kovalam, F. Panther, B. Zhang, arXiv: 2212.00201 (2022)

    Google Scholar 

  • J.B. Muñoz, E.D. Kovetz, L. Dai, M. Kamionkowski, Lensing of fast radio bursts as a probe of compact dark matter. Phys. Rev. Lett. 117(9), 091301 (2016). https://doi.org/10.1103/PhysRevLett.117.091301, 1605.00008

  • R. Narayan, The physics of pulsar scintillation. Philos. Trans. R. Soc. Lond. A 341(1660), 151–165 (1992). https://doi.org/10.1098/rsta.1992.0090

    Article  ADS  Google Scholar 

  • Y. Niino, Fast radio bursts’ recipes for the distributions of dispersion measures, flux densities, and fluences. ApJ 858(1), 4 (2018). https://doi.org/10.3847/1538-4357/aab9a9, 1801.06578

  • K. Nimmo, J.W.T. Hessels, A. Keimpema, A.M. Archibald, J.M. Cordes, R. Karuppusamy, F. Kirsten, D.Z. Li, B. Marcote, Z. Paragi, Highly polarized microstructure from the repeating FRB 20180916B. Nat. Astron. 5, 594–603 (2021a). https://doi.org/10.1038/s41550-021-01321-3, 2010.05800

  • K. Nimmo, J.W.T. Hessels, F. Kirsten, A. Keimpema, J.M. Cordes, M.P. Snelders, D.M. Hewitt, R. Karuppusamy, A.M. Archibald, V. Bezukovs, M. Bhardwaj, R. Blaauw, S.T. Buttaccio, T. Cassanelli, J.E. Conway, A. Corongiu, R. Feiler, E. Fonseca, O. Forssen, M. Gawronski, M. Giroletti, M.A. Kharinov, C. Leung, M. Lindqvist, G. Maccaferri, B. Marcote, K.W. Masui, R. Mckinven, A. Melnikov, D. Michilli, A. Mikhailov, C. Ng, A. Orbidans, O.S. Ould-Boukattine, Z. Paragi, A.B. Pearlman, E. Petroff, M. Rahman, P. Scholz, K. Shin, K.M. Smith, I.H. Stairs, G. Surcis, S.P. Tendulkar, W. Vlemmings, N. Wang, J. Yang, J. Yuan, Burst timescales and luminosities link young pulsars and fast radio bursts (2021b). arXiv e-prints arXiv:2105.11446, 2105.11446

    Google Scholar 

  • C.H. Niu, K. Aggarwal, D. Li, X. Zhang, S. Chatterjee, C.W. Tsai, W. Yu, C.J. Law, S. Burke-Spolaor, J.M. Cordes, Y.K. Zhang, S. Ocker, J.M. Yao, P. Wang, Y. Feng, Y. Niino, C. Bochenek, M. Cruces, L. Connor, J.A. Jiang, S. Dai, R. Luo, G.D. Li, C.C. Miao, J.R. Niu, R. Anna-Thomas, J. Sydnor, D. Stern, W.Y. Wang, M. Yuan, Y.L. Yue, D.J. Zhou, Z. Yan, W.W. Zhu, B. Zhang, A repeating fast radio burst in a dense environment with a compact persistent radio source (2021). arXiv e-prints arXiv:2110.07418, 2110.07418

    Google Scholar 

  • C. Núñez, N. Tejos, G. Pignata, C.D. Kilpatrick, J.X. Prochaska, K.E. Heintz, K.W. Bannister, S. Bhandari, C.K. Day, A.T. Deller, C. Flynn, E.K. Mahony, D. Majewski, L. Marnoch, H. Qiu, S.D. Ryder, R.M. Shannon, Constraining bright optical counterparts of fast radio bursts. A&A 653, A119 (2021). https://doi.org/10.1051/0004-6361/202141110, 2104.09727

  • K. Murase, K. Kashiyama, P. Meszaros, MNRAS 461, 1498 (2016)

    Article  ADS  Google Scholar 

  • N. Oppermann, H.R. Yu, U.L. Pen, On the non-Poissonian repetition pattern of FRB121102. MNRAS 475(4), 5109–5115 (2018). https://doi.org/10.1093/mnras/sty004, 1705.04881

  • S.P. O’Sullivan, S. Brown, T. Robishaw, D.H.F.M. Schnitzeler, N.M. McClure-Griffiths, I.J. Feain, A.R. Taylor, B.M. Gaensler, T.L. Landecker, L. Harvey-Smith, E. Carretti, Complex Faraday depth structure of active galactic nuclei as revealed by broad-band radio polarimetry. MNRAS 421(4), 3300–3315 (2012). https://doi.org/10.1111/j.1365-2966.2012.20554.x, 1201.3161

  • D. Palaniswamy, Y. Li, B. Zhang, Are there multiple populations of fast radio bursts? ApJL 854(1), L12 (2018). https://doi.org/10.3847/2041-8213/aaaa63, 1703.09232

  • I. Pastor-Marazuela, L. Connor, J. van Leeuwen, Y. Maan, S. ter Veen, A. Bilous, L. Oostrum, E. Petroff, S. Straal, D. Vohl, J. Attema, O.M. Boersma, E. Kooistra, van der Schuur D, A. Sclocco, R. Smits, E.A.K. Adams, B. Adebahr, W.J.G. de Blok, A.H.W.M. Coolen, S. Damstra, H. Dénes, K.M. Hess, T. van der Hulst, B. Hut, V.M. Ivashina, A. Kutkin, G.M. Loose, D.M. Lucero, Á. Mika, V.A. Moss, H. Mulder, M.J. Norden, T. Oosterloo, E. Orrú, M. Ruiter, S.J. Wijnholds, Chromatic periodic activity down to 120 megahertz in a fast radio burst. Nature 596(7873), 505–508 (2021). https://doi.org/10.1038/s41586-021-03724-8, 2012.08348

  • C. Patel, D. Agarwal, M. Bhardwaj, M.M. Boyce, A. Brazier, S. Chatterjee, P. Chawla, D.R. Lorimer, M.A. McLaughlin, E. Parent, Z. Pleunis, S.M. Ransom, P. Scholz, R.S. Wharton, W.W. Zhu, M. Alam, K. Caballero Valdez, F. Camilo, J.M. Cordes, F. Crawford, J.S. Deneva, R.D. Ferdman, P.C.C. Freire, J.W.T. Hessels, B. Nguyen, I. Stairs, K. Stovall, J. van Leeuwen, PALFA single-pulse pipeline: new pulsars, rotating radio transients, and a candidate fast radio burst. ApJ 869(2), 181 (2018). https://doi.org/10.3847/1538-4357/aaee65, 1808.03710

  • E. Petroff, M. Bailes, E.D. Barr, B.R. Barsdell, n.d.R. Bhat, F. Bian, S. Burke-Spolaor, M. Caleb, D. Champion, P. Chandra, G. Da Costa, C. Delvaux, C. Flynn, N. Gehrels, J. Greiner, A. Jameson, S. Johnston, M.M. Kasliwal, E.F. Keane, S. Keller, J. Kocz, M. Kramer, G. Leloudas, D. Malesani, J.S. Mulchaey, C. Ng, E.O. Ofek, D.A. Perley, A. Possenti, B.P. Schmidt, Y. Shen, B. Stappers, P. Tisserand, W. van Straten, C. Wolf, A real-time fast radio burst: polarization detection and multiwavelength follow-up. MNRAS 447(1), 246–255 (2015). https://doi.org/10.1093/mnras/stu2419, 1412.0342

  • E. Petroff, J.W.T. Hessels, D.R. Lorimer, Fast radio bursts. A&ARv 27(1), 4 (2019). https://doi.org/10.1007/s00159-019-0116-6, 1904.07947

  • A.L. Piro, The impact of a supernova remnant on fast radio bursts. ApJL 824(2), L32 (2016). https://doi.org/10.3847/2041-8205/824/2/L32, 1604.04909

  • Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A.J. Banday, R.B. Barreiro, N. Bartolo, S. Basak, R. Battye, K. Benabed, J.P. Bernard, M. Bersanelli, P. Bielewicz, J.J. Bock, J.R. Bond, J. Borrill, F.R. Bouchet, F. Boulanger, M. Bucher, C. Burigana, R.C. Butler, E. Calabrese, J.F. Cardoso, J. Carron, A. Challinor, H.C. Chiang, J. Chluba, L.P.L. Colombo, C. Combet, D. Contreras, B.P. Crill, F. Cuttaia, P. de Bernardis, G. de Zotti, J. Delabrouille, J.M. Delouis, E. Di Valentino, J.M. Diego, O. Doré, M. Douspis, A. Ducout, X. Dupac, S. Dusini, G. Efstathiou, F. Elsner, T.A. Enßlin, H.K. Eriksen, Y. Fantaye, M. Farhang, J. Fergusson, R. Fernandez-Cobos, F. Finelli, F. Forastieri, M. Frailis, A.A. Fraisse, E. Franceschi, A. Frolov, S. Galeotta, S. Galli, K. Ganga, R.T. Génova-Santos, M. Gerbino, T. Ghosh, J. González-Nuevo, K.M. Górski, S. Gratton, A. Gruppuso, J.E. Gudmundsson, J. Hamann, W. Handley, F.K. Hansen, D. Herranz, S.R. Hildebrandt, E. Hivon, Z. Huang, A.H. Jaffe, W.C. Jones, A. Karakci, E. Keihänen, R. Keskitalo, K. Kiiveri, J. Kim, T.S. Kisner, L. Knox, N. Krachmalnicoff, M. Kunz, H. Kurki-Suonio, G. Lagache, J.M. Lamarre, A. Lasenby, M. Lattanzi, C.R. Lawrence, M. Le Jeune, P. Lemos, J. Lesgourgues, F. Levrier, A. Lewis, M. Liguori, P.B. Lilje, M. Lilley, V. Lindholm, M. López-Caniego, P.M. Lubin, Y.Z. Ma, J.F. Macías-Pérez, G. Maggio, D. Maino, N. Mandolesi, A. Mangilli, A. Marcos-Caballero, M. Maris, P.G. Martin, M. Martinelli, E. Martínez-González, S. Matarrese, N. Mauri, J.D. McEwen, P.R. Meinhold, A. Melchiorri, A. Mennella, M. Migliaccio, M. Millea, S. Mitra, M.A. Miville-Deschênes, D. Molinari, L. Montier, G. Morgante, A. Moss, P. Natoli, H.U. Nørgaard-Nielsen, L. Pagano, D. Paoletti, B. Partridge, G. Patanchon, H.V. Peiris, F. Perrotta, V. Pettorino, F. Piacentini, L. Polastri, G. Polenta, J.L. Puget, J.P. Rachen, M. Reinecke, M. Remazeilles, A. Renzi, G. Rocha, C. Rosset, G. Roudier, J.A. Rubiño-Martín, B. Ruiz-Granados, L. Salvati, M. Sandri, M. Savelainen, D. Scott, E.P.S. Shellard, C. Sirignano, G. Sirri, L.D. Spencer, R. Sunyaev, A.S. Suur-Uski, J.A. Tauber, D. Tavagnacco, M. Tenti, L. Toffolatti, M. Tomasi, T. Trombetti, L. Valenziano, J. Valiviita, B. Van Tent, L. Vibert, P. Vielva, F. Villa, N. Vittorio, B.D. Wandelt, I.K. Wehus, M. White, S.D.M. White, A. Zacchei, A. Zonca, Planck 2018 results. VI. Cosmological parameters. A&A 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910, 1807.06209

  • E. Platts, A. Weltman, A. Walters, S.P. Tendulkar, J.E.B. Gordin, S. Kandhai, A living theory catalogue for fast radio bursts. PhR 821, 1–27 (2019). https://doi.org/10.1016/j.physrep.2019.06.003, 1810.05836

  • Z. Pleunis, D.C. Good, V.M. Kaspi, R. Mckinven, S.M. Ransom, P. Scholz, K. Bandura, M. Bhardwaj, P.J. Boyle, C. Brar, T. Cassanelli, P. Chawla, F. Adam Dong, E. Fonseca, B.M. Gaensler, A. Josephy, J.F. Kaczmarek, C. Leung, H.H. Lin, K.W. Masui, J. Mena-Parra, D. Michilli, C. Ng, C. Patel, M. Rafiei-Ravandi, M. Rahman, P. Sanghavi, K. Shin, K.M. Smith, I.H. Stairs, S.P. Tendulkar, Fast radio burst morphology in the first CHIME/FRB catalog. ApJ 923(1), 1 (2021a). https://doi.org/10.3847/1538-4357/ac33ac, 2106.04356

  • Z. Pleunis, D. Michilli, C.G. Bassa, J.W.T. Hessels, A. Naidu, B.C. Andersen, P. Chawla, E. Fonseca, A. Gopinath, V.M. Kaspi, V.I. Kondratiev, D.Z. Li, M. Bhardwaj, P.J. Boyle, C. Brar, T. Cassanelli, Y. Gupta, A. Josephy, R. Karuppusamy, A. Keimpema, F. Kirsten, C. Leung, B. Marcote, K.W. Masui, R. Mckinven, B.W. Meyers, C. Ng, K. Nimmo, Z. Paragi, M. Rahman, P. Scholz, K. Shin, K.M. Smith, I.H. Stairs, S.P. Tendulkar, LOFAR detection of 110–188 MHz emission and frequency-dependent activity from FRB 20180916B. ApJL 911(1), L3 (2021b). https://doi.org/10.3847/2041-8213/abec72, 2012.08372

  • I. Plotnikov, L. Sironi, The synchrotron maser emission from relativistic shocks in Fast Radio Bursts: 1D PIC simulations of cold pair plasmas. MNRAS 485(3), 3816–3833 (2019). https://doi.org/10.1093/mnras/stz640, 1901.01029

  • S.B. Popov, K.A. Postnov, M.S. Pshirkov, Fast radio bursts. Phys. Usp. 61(10), 965 (2018). https://doi.org/10.3367/UFNe.2018.03.038313, 1806.03628

  • H. Qiu, R.M. Shannon, W. Farah, J.P. Macquart, A.T. Deller, K.W. Bannister, C.W. James, C. Flynn, C.K. Day, S. Bhandari, T. Murphy, A population analysis of pulse broadening in ASKAP fast radio bursts. MNRAS 497(2), 1382–1390 (2020). https://doi.org/10.1093/mnras/staa1916, 2006.16502

  • X.W. Qiu, Z.W. Zhao, L.F. Wang, J.F. Zhang, X. Zhang, A forecast of using fast radio burst observations to constrain holographic dark energy. JCAP 2022(2), 006 (2022). https://doi.org/10.1088/1475-7516/2022/02/006, 2108.04127

  • F. Rajabi, M.A. Chamma, C.M. Wyenberg, A. Mathews, M. Houde, A simple relationship for the spectro-temporal structure of bursts from FRB 121102. MNRAS 498(4), 4936–4942 (2020). https://doi.org/10.1093/mnras/staa2723, 2008.02395

  • K.M. Rajwade, M.B. Mickaliger, B.W. Stappers, V. Morello, D. Agarwal, C.G. Bassa, R.P. Breton, M. Caleb, A. Karastergiou, E.F. Keane, D.R. Lorimer, Possible periodic activity in the repeating FRB 121102. MNRAS 495(4), 3551–3558 (2020). https://doi.org/10.1093/mnras/staa1237, 2003.03596

  • V. Ravi, The observed properties of fast radio bursts. MNRAS 482(2), 1966–1978 (2019). https://doi.org/10.1093/mnras/sty1551, 1710.08026

  • V. Ravi, M. Catha, L. D’Addario, S.G. Djorgovski, G. Hallinan, R. Hobbs, J. Kocz, S.R. Kulkarni, J. Shi, H.K. Vedantham, S. Weinreb, D.P. Woody, A fast radio burst localized to a massive galaxy. Nature 572(7769), 352–354 (2019). https://doi.org/10.1038/s41586-019-1389-7, 1907.01542

  • B.J. Rickett, Radio propagation through the turbulent interstellar plasma. ARA&A 28, 561–605 (1990). https://doi.org/10.1146/annurev.aa.28.090190.003021

    Article  ADS  Google Scholar 

  • A. Ridnaia, D. Svinkin, D. Frederiks, A. Bykov, S. Popov, R. Aptekar, S. Golenetskii, A. Lysenko, A. Tsvetkova, M. Ulanov, T.L. Cline, A peculiar hard X-ray counterpart of a galactic fast radio burst. Nat. Astron. 5, 372–377 (2021). https://doi.org/10.1038/s41550-020-01265-0, 2005.11178

  • A.G. Riess, S. Casertano, W. Yuan, J.B. Bowers, L. Macri, J.C. Zinn, D. Scolnic, Cosmic distances calibrated to 1% precision with gaia EDR3 parallaxes and hubble space telescope photometry of 75 milky way cepheids confirm tension with ΛCDM. ApJL 908(1), L6 (2021). https://doi.org/10.3847/2041-8213/abdbaf, 2012.08534

  • A. Saggion, Curvature hadiation by bunches of particles. A&A 44, 285 (1975)

    ADS  Google Scholar 

  • R. Sari, T. Piran, Hydrodynamic timescales and temporal structure of gamma-ray bursts. ApJL 455, L143 (1995). https://doi.org/10.1086/309835, astro-ph/9508081

  • P. Scholz, L.G. Spitler, J.W.T. Hessels, S. Chatterjee, J.M. Cordes, V.M. Kaspi, R.S. Wharton, C.G. Bassa, S. Bogdanov, F. Camilo, F. Crawford, J. Deneva, J. van Leeuwen, R. Lynch, E.C. Madsen, M.A. McLaughlin, M. Mickaliger, E. Parent, C. Patel, S.M. Ransom, A. Seymour, I.H. Stairs, B.W. Stappers, S.P. Tendulkar, The repeating fast radio burst FRB 121102: multi-wavelength observations and additional bursts. ApJ 833(2), 177 (2016). https://doi.org/10.3847/1538-4357/833/2/177, 1603.08880

  • R.M. Shannon, J.P. Macquart, K.W. Bannister, R.D. Ekers, C.W. James, S. Osłowski, H. Qiu, M. Sammons, A.W. Hotan, M.A. Voronkov, R.J. Beresford, M. Brothers, A.J. Brown, J.D. Bunton, A.P. Chippendale, C. Haskins, M. Leach, M. Marquarding, D. McConnell, M.A. Pilawa, E.M. Sadler, E.R. Troup, J. Tuthill, M.T. Whiting, J.R. Allison, C.S. Anderson, M.E. Bell, J.D. Collier, G. Gürkan, G. Heald, C.J. Riseley, The dispersion-brightness relation for fast radio bursts from a wide-field survey. Nature 562(7727), 386–390 (2018). https://doi.org/10.1038/s41586-018-0588-y

  • D. Simard, V. Ravi, Scintillation can explain the spectral structure of the bright radio burst from SGR 1935+2154. ApJL 899(1), L21 (2020). https://doi.org/10.3847/2041-8213/abaa40, 2006.13184

  • D.N. Sob’yanin, Periodic fast radio bursts from forcedly precessing neutron stars, anomalous torque, and internal magnetic field for FRB 180916.J0158+65 and FRB 121102. MNRAS 497(1), 1001–1007 (2020). https://doi.org/10.1093/mnras/staa1976, 2007.01616

  • L.G. Spitler, J.M. Cordes, J.W.T. Hessels, D.R. Lorimer, M.A. McLaughlin, S. Chatterjee, F. Crawford, J.S. Deneva, V.M. Kaspi, R.S. Wharton, B. Allen, S. Bogdanov, A. Brazier, F. Camilo, P.C.C. Freire, F.A. Jenet, Karako-Argaman C, B. Knispel, P. Lazarus, K.J. Lee, J. van Leeuwen, R. Lynch, S.M. Ransom, P. Scholz, X. Siemens, I.H. Stairs, K. Stovall, J.K. Swiggum, A. Venkataraman, W.W. Zhu, C. Aulbert, H. Fehrmann, Fast radio burst discovered in the arecibo pulsar ALFA survey. ApJ 790(2), 101 (2014). https://doi.org/10.1088/0004-637X/790/2/101, 1404.2934

  • L.G. Spitler, P. Scholz, J.W.T. Hessels, S. Bogdanov, A. Brazier, F. Camilo, S. Chatterjee, J.M. Cordes, F. Crawford, J. Deneva, R.D. Ferdman, P.C.C. Freire, V.M. Kaspi, P. Lazarus, R. Lynch, E.C. Madsen, M.A. McLaughlin, C. Patel, S.M. Ransom, A. Seymour, I.H. Stairs, B.W. Stappers, J. van Leeuwen, W.W. Zhu, A repeating fast radio burst. Nature 531(7593), 202–205 (2016). https://doi.org/10.1038/nature17168, 1603.00581

  • V. Springel, R. Pakmor, A. Pillepich, R. Weinberger, D. Nelson, L. Hernquist, M. Vogelsberger, S. Genel, P. Torrey, F. Marinacci, J. Naiman, First results from the IllustrisTNG simulations: matter and galaxy clustering. MNRAS 475(1), 676–698 (2018). https://doi.org/10.1093/mnras/stx3304, 1707.03397

  • M. Tavani, C. Casentini, A. Ursi, F. Verrecchia, A. Addis, L.A. Antonelli, A. Argan, G. Barbiellini, L. Baroncelli, G. Bernardi, G. Bianchi, A. Bulgarelli, P. Caraveo, M. Cardillo, P.W. Cattaneo, A.W. Chen, E. Costa, E. Del Monte, G. Di Cocco, G. Di Persio, I. Donnarumma, Y. Evangelista, M. Feroci, A. Ferrari, V. Fioretti, F. Fuschino, M. Galli, F. Gianotti, A. Giuliani, C. Labanti, F. Lazzarotto, P. Lipari, F. Longo, F. Lucarelli, A. Magro, M. Marisaldi, S. Mereghetti, E. Morelli, A. Morselli, G. Naldi, L. Pacciani, N. Parmiggiani, F. Paoletti, A. Pellizzoni, M. Perri, F. Perotti, G. Piano, P. Picozza, M. Pilia, C. Pittori, S. Puccetti, G. Pupillo, M. Rapisarda, A. Rappoldi, A. Rubini, G. Setti, P. Soffitta, M. Trifoglio, A. Trois, S. Vercellone, V. Vittorini, P. Giommi, F. D’Amico, An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts. Nat. Astron. 5, 401–407 (2021). https://doi.org/10.1038/s41550-020-01276-x, 2005.12164

  • S.P. Tendulkar, C.G. Bassa, J.M. Cordes, G.C. Bower, C.J. Law, S. Chatterjee, E.A.K. Adams, S. Bogdanov, S. Burke-Spolaor, B.J. Butler, P. Demorest, J.W.T. Hessels, V.M. Kaspi, T.J.W. Lazio, N. Maddox, B. Marcote, M.A. McLaughlin, Z. Paragi, S.M. Ransom, P. Scholz, A. Seymour, L.G. Spitler, H.J. van Langevelde, R.S. Wharton, The host galaxy and redshift of the repeating fast radio burst FRB 121102. ApJL 834(2), L7 (2017). https://doi.org/10.3847/2041-8213/834/2/L7, 1701.01100

  • The CHIME/FRB Collaboration, M. Amiri, B.C. Andersen, K. Bandura, S. Berger, M. Bhardwaj, M.M. Boyce, P.J. Boyle, C. Brar, D. Breitman, T. Cassanelli, P. Chawla, T. Chen, J.F. Cliche, A. Cook, D. Cubranic, Curtin AP, M. Deng, M. Dobbs, Fengqiu, Dong, G. Eadie, M. Fandino, E. Fonseca, B.M. Gaensler, U. Giri, D.C. Good, M. Halpern, A.S. Hill, G. Hinshaw, A. Josephy, J.F. Kaczmarek, Z. Kader, J.W. Kania, V.M. Kaspi, T.L. Landecker, D. Lang, C. Leung, D. Li, H.H. Lin, K.W. Masui, R. Mckinven, J. Mena-Parra, M. Merryfield, B.W. Meyers, D. Michilli, N. Milutinovic, A. Mirhosseini, M. Münchmeyer, A. Naidu, L. Newburgh, C. Ng, C. Patel, U.L. Pen, E. Petroff, T. Pinsonneault-Marotte, Z. Pleunis, M. Rafiei-Ravandi, M. Rahman, S.M. Ransom, A. Renard, P. Sanghavi, P. Scholz, J.R. Shaw, K. Shin, S.R. Siegel, A.E. Sikora, S. Singh, K.M. Smith, I. Stairs, C.M. Tan, S.P. Tendulkar, K. Vanderlinde, H. Wang, D. Wulf, A.V. Zwaniga, The first CHIME/FRB fast radio burst catalog (2021a). arXiv e-prints arXiv:2106.04352, 2106.04352

    Google Scholar 

  • The CHIME/FRB Collaboration, B.C. Andersen, K. Bandura, M. Bhardwaj, P.J. Boyle, C. Brar, D. Breitman, T. Cassanelli, S. Chatterjee, P. Chawla, J.F. Cliche, D. Cubranic, A.P. Curtin, M. Deng, M. Dobbs, F.A. Dong, E. Fonseca, B.M. Gaensler, U. Giri, D.C. Good, A.S. Hill, A. Josephy, J.F. Kaczmarek, Z. Kader, J. Kania, V.M. Kaspi, C. Leung, D.Z. Li, H.H. Lin, K.W. Masui, R. Mckinven, J. Mena-Parra, M. Merryfield, B.W. Meyers, D. Michilli, A. Naidu, L. Newburgh, C. Ng, A. Ordog, C. Patel, A.B. Pearlman, U.L. Pen, E. Petroff, Z. Pleunis, M. Rafiei-Ravandi, M. Rahman, S. Ransom, A. Renard, P. Sanghavi, P. Scholz, J.R. Shaw, K. Shin, S.R. Siegel, S. Singh, K. Smith, I. Stairs, C.M. Tan, S.P. Tendulkar, K. Vanderlinde, D.V. Wiebe, D. Wulf, A. Zwaniga, Sub-second periodicity in a fast radio burst (2021b). arXiv e-prints arXiv:2107.08463, 2107.08463

    Google Scholar 

  • D. Thornton, B. Stappers, M. Bailes, B. Barsdell, S. Bates, n.d.R. Bhat, M. Burgay, S. Burke-Spolaor, D.J. Champion, P. Coster, N. D’Amico, A. Jameson, S. Johnston, M. Keith, M. Kramer, L. Levin, S. Milia, C. Ng, A. Possenti, W. van Straten, A population of fast radio bursts at cosmological distances. Science 341(6141), 53–56 (2013). https://doi.org/10.1126/science.1236789, 1307.1628

  • S. Tingay, W. Joubert, High cadence optical transient searches using drift scan imaging II: event rate upper limits on optical transients of duration <21 ms and magnitude <6.6. PASA 38, e001 (2021). https://doi.org/10.1017/pasa.2020.53, 2012.02316

  • H. Tong, W. Wang, H.G. Wang, Periodicity in fast radio bursts due to forced precession by a fallback disk. Res. Astron. Astrophys. 20(9), 142 (2020). https://doi.org/10.1088/1674-4527/20/9/142, 2002.10265

  • Z. Wadiasingh, C. Chirenti, Fast radio burst trains from magnetar oscillations. ApJL 903(2), L38 (2020). https://doi.org/10.3847/2041-8213/abc562, 2006.16231

  • Z. Wadiasingh, A. Timokhin, Repeating fast radio bursts from magnetars with low magnetospheric twist. ApJ 879(1), 4 (2019). https://doi.org/10.3847/1538-4357/ab2240, 1904.12036

  • J. Wagner, X. Er, Plasma lensing in comparison to gravitational lensing – Formalism and degeneracies (2020). arXiv e-prints arXiv:2006.16263, 2006.16263

    Google Scholar 

  • A. Walters, A. Weltman, B.M. Gaensler, Y.Z. Ma, A. Witzemann, Future cosmological constraints from fast radio bursts. ApJ 856(1), 65 (2018). https://doi.org/10.3847/1538-4357/aaaf6b, 1711.11277

  • F.Y. Wang, H. Yu, SGR-like behaviour of the repeating FRB 121102. JCAP 2017(3), 023 (2017). https://doi.org/10.1088/1475-7516/2017/03/023, 1604.08676

  • F.Y. Wang, G.Q. Zhang, A universal energy distribution for FRB 121102. ApJ 882(2), 108 (2019). https://doi.org/10.3847/1538-4357/ab35dc, 1904.12408

  • F.Y. Wang, Y.Y. Wang, Y.P. Yang, Y.W. Yu, Z.Y. Zuo, Z.G. Dai, Fast radio bursts from activity of neutron stars newborn in bns mergers: offset, birth rate, and observational properties. ApJ 891(1), 72 (2020a). https://doi.org/10.3847/1538-4357/ab74d0, 2002.03507

  • F.Y. Wang, G.Q. Zhang, Z.G. Dai, Galactic and cosmological fast radio bursts as scaled-up solar radio bursts. MNRAS 501(3), 3155–3161 (2021). https://doi.org/10.1093/mnras/staa3912, 1903.11895

  • J.S. Wang, Y.P. Yang, X.F. Wu, Z.G. Dai, F.Y. Wang, Fast radio bursts from the inspiral of double neutron stars. ApJL 822(1), L7 (2016). https://doi.org/10.3847/2041-8205/822/1/L7, 1603.02014

  • W. Wang, B. Zhang, X. Chen, R. Xu, On the time-frequency downward drifting of repeating fast radio bursts. ApJL 876(1), L15 (2019). https://doi.org/10.3847/2041-8213/ab1aab, 1903.03982

  • W.Y. Wang, R. Xu, X. Chen, On the magnetospheric origin of repeating fast radio bursts. ApJ 899(2), 109 (2020b). https://doi.org/10.3847/1538-4357/aba268, 2005.02100

  • Y.K. Wang, F.Y. Wang, Lensing of fast radio bursts by binaries to probe compact dark matter. A&A 614, A50 (2018). https://doi.org/10.1051/0004-6361/201731160, 1801.07360

  • Y.J. Wei, Z.Y. Zhao, F.Y. Wang, The periodic origin of fast radio bursts. A&A 658, A163 (2022). https://doi.org/10.1051/0004-6361/202142321, 2112.09292

  • Q. Wu, H. Yu, F.Y. Wang, A New method to measure hubble parameter H(z) using fast radio bursts. ApJ 895(1), 33 (2020a). https://doi.org/10.3847/1538-4357/ab88d2, 2004.12649

  • Q. Wu, G.Q. Zhang, F.Y. Wang, Z.G. Dai, Understanding FRB 200428 in the synchrotron maser shock model: consistency and possible challenge. ApJL 900(2), L26 (2020b). https://doi.org/10.3847/2041-8213/abaef1, 2008.05635

  • Q. Wu, G.Q. Zhang, F.Y. Wang, An 8∖% Determination of the Hubble Constant from localized Fast Radio Bursts (2021). arXiv e-prints arXiv:2108.00581, 2108.00581

    Google Scholar 

  • D. Xiao, Z.G. Dai, Double-peaked pulse profile of FRB 200428: synchrotron maser emission from magnetized shocks encountering a density jump. ApJL 904(1), L5 (2020). https://doi.org/10.3847/2041-8213/abc551, 2010.14787

  • D. Xiao, Z.G. Dai, New insights into the criteria of fast radio burst in the light of FRB 20121102A (2021). arXiv e-prints arXiv:2112.12301, 2112.12301

    Google Scholar 

  • D. Xiao, F. Wang, Z. Dai, The physics of fast radio bursts. Sci. China Phys. Mech. Astron. 64(4), 249501 (2021). https://doi.org/10.1007/s11433-020-1661-7, 2101.04907

  • D. Xiao, Z.G. Dai, A&A 667, 26 (2022)

    Article  ADS  Google Scholar 

  • H. Xu, J.R. Niu, P. Chen, K.J. Lee, W.W. Zhu, S. Dong, B. Zhang, J.C. Jiang, B.J. Wang, J.W. Xu, C.F. Zhang, H. Fu, A.V. Filippenko, E.W. Peng, D.J. Zhou, Y.K. Zhang, P. Wang, Y. Feng, Y. Li, T.G. Brink, D.Z. Li, W. Lu, Y.P. Yang, R.N. Caballero, C. Cai, M.Z. Chen, Z.G. Dai, S.G. Djorgovski, A. Esamdin, H.Q. Gan, P. Guhathakurta, J.L. Han, L.F. Hao, Y.X. Huang, P. Jiang, C.K. Li, D. Li, H. Li, X.Q. Li, Z.X. Li, Z.Y. Liu, R. Luo, Y.P. Men, C.H. Niu, W.X. Peng, L. Qian, L.M. Song, D. Stern, A. Stockton, J.H. Sun, F.Y. Wang, M. Wang, N. Wang, W.Y. Wang, X.F. Wu, S. Xiao, S.L. Xiong, Y.H. Xu, R.X. Xu, J. Yang, X. Yang, R. Yao, Q.B. Yi, Y.L. Yue, D.J. Yu, W.F. Yu, J.P. Yuan, B.B. Zhang, S.B. Zhang, S.N. Zhang, Y. Zhao, W.K. Zheng, Y. Zhu, J.H. Zou, A fast radio burst source at a complex magnetised site in a barred galaxy (2021). arXiv e-prints arXiv:2111.11764, 2111.11764

    Google Scholar 

  • S. Xu, B. Zhang, On the origin of the scatter broadening of fast radio burst pulses and astrophysical implications. ApJ 832(2), 199 (2016). https://doi.org/10.3847/0004-637X/832/2/199, 1608.03930

  • H. Yang, Y.C. Zou, Orbit-induced spin precession as a possible origin for periodicity in periodically repeating fast radio bursts. ApJL 893(2), L31 (2020). https://doi.org/10.3847/2041-8213/ab800f, 2002.02553

  • Y.P. Yang, B. Zhang, Dispersion measure variation of repeating fast radio burst sources. ApJ 847(1), 22 (2017). https://doi.org/10.3847/1538-4357/aa8721, 1707.02923

  • Y.P. Yang, B. Zhang, Bunching coherent curvature radiation in three-dimensional magnetic field geometry: application to pulsars and fast radio bursts. ApJ 868(1), 31 (2018). https://doi.org/10.3847/1538-4357/aae685, 1712.02702

  • Y.P. Yang, B. Zhang, Z.G. Dai, Synchrotron heating by a fast radio burst in a self-absorbed synchrotron nebula and its observational signature. ApJL 819(1), L12 (2016). https://doi.org/10.3847/2041-8205/819/1/L12, 1602.05013

  • Y.P. Yang, B. Zhang, J.Y. Wei, How bright are fast optical bursts associated with fast radio bursts? ApJ 878(2), 89 (2019). https://doi.org/10.3847/1538-4357/ab1fe2, 1905.02429

  • Y.P. Yang, J.P. Zhu, B. Zhang, X.F. Wu, Pair separation in parallel electric field in magnetar magnetosphere and narrow spectra of fast radio bursts. ApJL 901(1), L13 (2020). https://doi.org/10.3847/2041-8213/abb535, 2006.03270

  • J.M. Yao, R.N. Manchester, N. Wang, A new electron-density model for estimation of pulsar and FRB distances. ApJ 835(1), 29 (2017). https://doi.org/10.3847/1538-4357/835/1/29, 1610.09448

  • H. Yu, F.Y. Wang, Measuring the cosmic proper distance from fast radio bursts. A&A 606, A3 (2017). https://doi.org/10.1051/0004-6361/201731607, 1708.06905

  • Y. Yuan, A.M. Beloborodov, A.Y. Chen, Y. Levin, Plasmoid ejection by Alfvén waves and the fast radio bursts from SGR 1935+2154. ApJL 900(2), L21 (2020). https://doi.org/10.3847/2041-8213/abafa8, 2006.04649

  • J.J. Zanazzi, D. Lai, Periodic fast radio bursts with neutron star free precession. ApJL 892(1), L15 (2020). https://doi.org/10.3847/2041-8213/ab7cdd, 2002.05752

  • B. Zhang, Fast radio burst energetics and detectability from high redshifts. ApJL 867(2), L21 (2018). https://doi.org/10.3847/2041-8213/aae8e3, 1808.05277

  • B. Zhang, Fast radio bursts from interacting binary neutron star systems. ApJL 890(2), L24 (2020a). https://doi.org/10.3847/2041-8213/ab7244, 2002.00335

  • B. Zhang, The physical mechanisms of fast radio bursts. Nature 587(7832), 45–53 (2020b). https://doi.org/10.1038/s41586-020-2828-1, 2011.03500

  • B. Zhang, Unexpected emission pattern adds to the enigma of fast radio bursts. Nature 582(7812), 344–346 (2020c). https://doi.org/10.1038/d41586-020-01713-x

    Article  ADS  Google Scholar 

  • B. Zhang, Coherent inverse compton scattering by bunches in fast radio bursts. ApJ 925(1), 53 (2022). https://doi.org/10.3847/1538-4357/ac3979, 2111.06571

  • G.Q. Zhang, F.Y. Wang, Energy function, formation rate, and low-metallicity environment of fast radio bursts. MNRAS 487(3), 3672–3678 (2019). https://doi.org/10.1093/mnras/stz1566, 1906.01176

  • G.Q. Zhang, H. Yu, J.H. He, F.Y. Wang, Dispersion measures of fast radio burst host galaxies derived from illustris TNG simulation. ApJ 900(2), 170 (2020). https://doi.org/10.3847/1538-4357/abaa4a, 2007.13935

  • X. Zhang, H. Gao, What binary systems are the most likely sources for periodically repeating FRBs? MNRAS 498(1), L1–L5 (2020). https://doi.org/10.1093/mnrasl/slaa116, 2006.10328

  • Z.J. Zhang, K. Yan, C.M. Li, G.Q. Zhang, F.Y. Wang, Intergalactic medium dispersion measures of fast radio bursts estimated from illustris TNG simulation and their cosmological applications. ApJ 906(1), 49 (2021). https://doi.org/10.3847/1538-4357/abceb9, 2011.14494

  • Z.W. Zhao, Z.X. Li, J.Z. Qi, H. Gao, J.F. Zhang, X. Zhang, Cosmological parameter estimation for dynamical dark energy models with future fast radio burst observations. ApJ 903(2), 83 (2020). https://doi.org/10.3847/1538-4357/abb8ce, 2006.01450

  • Z.Y. Zhao, F.Y. Wang, FRB 190520B embedded in a magnetar wind nebula and supernova remnant: a luminous persistent radio source, decreasing dispersion measure, and large rotation measure. ApJL 923(1), L17 (2021). https://doi.org/10.3847/2041-8213/ac3f2f, 2112.00935

  • Z.Y. Zhao, G.Q. Zhang, Y.Y. Wang, Z.L. Tu, F.Y. Wang, Dispersion and rotation measures from the ejecta of compact binary mergers: clue to the progenitors of fast radio bursts. ApJ 907(2), 111 (2021). https://doi.org/10.3847/1538-4357/abd321, 2010.10702

  • Z. Zheng, E.O. Ofek, S.R. Kulkarni, J.D. Neill, M. Juric, Probing the intergalactic medium with fast radio bursts. ApJ 797(1), 71 (2014). https://doi.org/10.1088/0004-637X/797/1/71, 1409.3244

  • S.Q. Zhong, W.J. Xie, C.M. Deng, L. Li, Z.G. Dai, H.M. Zhang, Can a Single Population Account for the Discriminant Properties in Fast Radio Bursts? (2022). arXiv e-prints arXiv:2202.04422, 2202.04422

    Google Scholar 

  • B. Zhou, X. Li, T. Wang, Y.Z. Fan, D.M. Wei, Fast radio bursts as a cosmic probe? Phys. Rev. D 89(10), 107303 (2014). https://doi.org/10.1103/PhysRevD.89.107303, 1401.2927

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402600), the National SKA Program of China (grant No. 2020SKA0120300), and the National Natural Science Foundation of China (Grant Nos. 11833003, U1831207, 11903018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zigao Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xiao, D., Wang, FY., Dai, Z. (2024). Fast Radio Bursts. In: Bambi, C., Santangelo, A. (eds) Handbook of X-ray and Gamma-ray Astrophysics. Springer, Singapore. https://doi.org/10.1007/978-981-19-6960-7_128

Download citation

Publish with us

Policies and ethics