Skip to main content

Theoretical Evaluation of (Ge20Se80)100−x(Si20Te80)x Quaternary Chalcogenide Glassy Alloy

  • Chapter
  • First Online:
Emerging Trends in Mechanical and Industrial Engineering

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 679 Accesses

Abstract

Chalcogens are elements from group VI-A of periodic table—sulfur (S), selenium (Se), and tellurium (Te). A chalcogenide glass is a glass containing one or more chalcogen element as a substantial constituent. Chalcogen (S, Se, and Te) rich glassy systems have potential applications in nonlinear optical limiting devices, IR optics, reversible optical recording, memory switching, and other applications. A quaternary glassy system (Ge20Se80)100−x(Si20Te80)x has been investigated for different important physical parameters viz. molar volume, average heat of atomization, lone pair electrons, number of constraints, average coordination number, glass transition temperature, etc. Linear variation in glass transition temperature with varying heat of atomization and variation of high refractive index as a result of increasing density may account for the optical limiting effect. The approximated critically calculated physical parameters in the present study reveal the nonlinearity and structural detail of investigated glass for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharma A, Barman PB (2009) Calorimetric and optical study of amorphous Se85–xTe15Bix glassy alloy. Thin Solid Films 517:3020–3023

    Article  Google Scholar 

  2. Teteris J, Reinfelde M (2003) Application of amorphous chalcogenide semiconductor thin films in optical recording technologies. J Optoelectron Adv Mater 5:1355–1360

    Google Scholar 

  3. Fu LB, Rochette M, Ta VG et al (2006) Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber. Opt Express 13:1479–1481

    Google Scholar 

  4. Eggleton BJ, Luther-davies B, Richardson K (2011) Chalcogenide photonics. Nat Photonics 5:141–148

    Article  Google Scholar 

  5. Wagh A, Raviprakash Y, Ajithkumar MP et al (2015) Effect of Sm2O3 on structural and thermal properties of zinc fluoroborate glasses. Trans Nonferrous Met Soc China 25:1185–1193

    Article  Google Scholar 

  6. Riggs JE, Walker DB, Carroll DL et al (2000) Optical limiting properties of suspended and solubilized carbon nanotubes. J Phys Chem B 104:7071–7076

    Article  Google Scholar 

  7. Troles J et al (2004) Chalcogenide glasses as solid state optical limiters at 1. 064 l m. Opt Mater 25:231–237

    Article  Google Scholar 

  8. Nguyen HC, Yeom D, Mägi EC et al (2008) Nonlinear switching using long-period gratings in As2Se3 chalcogenide fiber. JOSA B 25:1393–1401

    Article  Google Scholar 

  9. Siegel J, Schropp A, Solis J et al (2004) Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses. Appl Phys Lett 84:2250–2252

    Article  Google Scholar 

  10. Sarangan A, Member S, Duran J et al (2018) Broadband reflective optical limiter using GST phase change material using GST phase change material. IEEE Photonics J 10:1–9

    Article  Google Scholar 

  11. Petkova T, Nedeva Y, Petkov P (2001) Compositional trends of the properties in chalcogenide Ge-Se-Ga glasses. J Optoelectronics Adv Mater 3:855–860

    Google Scholar 

  12. González-Leal JM, Ledesma A, Bernal-Oliva AM et al (1999) Optical properties of thin-film ternary Ge10As15Se75 chalcogenide glasses. Mater Lett 39:232–239

    Article  Google Scholar 

  13. Shaaban ER, Elshaikh HA, Soraya MM (2015) Compositional variation and thermal annealing effect on optical properties of Se-Te-Sb semiconductor thin films. Optoelectronics and Advanced Materials-Rapid Communications 9:587–600

    Google Scholar 

  14. Sanghera JS, Florea CM, Shaw LB et al (2008) Non-linear properties of chalcogenide glasses and fibers. J Non-Cryst Solids 354:462–467

    Article  Google Scholar 

  15. Chandel N, Mehta N (2019) Analysis of physicochemical properties in covalent network chalcogenide glasses (ChGs): critical review of theoretical modeling of chemical bond approach. SN Appl Sci 1:657

    Article  Google Scholar 

  16. Phillips JC, Laboratories B, Hill M (1979) Topology of covalent. J Non-Cryst Solids 34:153–181

    Article  Google Scholar 

  17. Thorpe MF (1983) Continuous deformations in random networks. J Non-Cryst Solids 57:355–370

    Article  Google Scholar 

  18. Phillips JC, Thorpe MF (1985) Constraint theory, vector percolation and glass formation. Solid State Commun 53:699–702

    Article  Google Scholar 

  19. Jain N, Pancholi KC, Kakani SL (2015) Theoretical predictions on physical properties of Se-Sb-Bi glass system with compositional variations. Int J Innovative Res Sci Eng Tech 3:219–226

    Google Scholar 

  20. Fadel M (1996) The physical properties and the chemical bond approach for Se-Ge-As amorphous chalcogenide glasses. Vacuum 48:73–83

    Article  Google Scholar 

  21. Kumar S, Singh A (2019) Study of glass-forming ability and structural chalcogenide glassy alloys, p 1594

    Google Scholar 

  22. Valency D (1963) The valence-shell electron-pair 40:295–301

    Google Scholar 

  23. Zhenhua L (1991) Chemical bond approach to the chalcogenide glass forming tendency. J Non-Cryst Solids 127:298–305

    Article  Google Scholar 

  24. Tichg L, Ticha H (1994) On the chemical threshold in chalcogenide glasses. Mater Lett 21:313–319

    Article  Google Scholar 

  25. Tich L, Tichfi H (1995) Covalent bond approach to the glass-transition temperature of chalcogenide glasses. J Non-Cryst Solids 189:141–146

    Article  Google Scholar 

  26. Fayek SA, Balboul MR, Marzouk KH (2007) Optical, electrical and thermal studies on (As2Se3)3–x(As2Te3)x glasses. Thin Solid Films 515:7281–7285

    Article  Google Scholar 

  27. Hassanien AS, Akl AA (2015) Estimation of some physical characteristics of chalcogenide bulk Cd50S50−xSex glassy systems. J Non Cryst Solids 428:112–120

    Article  Google Scholar 

  28. Akl AA, Hassanien AS (2015) Superlattices and microstructures microstructure and crystal imperfections of nanosized CdSxSe1−x thermally evaporated thin films. Superlattices Microstruct 85:67–81

    Article  Google Scholar 

  29. Sharma I, Sunder S (2018) Analysis of glass forming ability using percolation concept and tunability of physical parameters of a-Ge12Se76−xAs12Bix glassy semiconductors. Mater Sci-Pol 36:242–254

    Article  Google Scholar 

  30. Sanderson RT (2016) An interpretation of bond lengths and a classification of bonds. Science 114:670–672

    Article  Google Scholar 

  31. Fayek SA, Fouad SS (1999) Topological consideration of thallium on glassy arsenous selenide. Vacuum 52:359–363

    Article  Google Scholar 

  32. Lankhorst MHR (2002) Modelling glass transition temperatures of chalcogenide glasses. Applied to Phase-Change Optical Recording Materials 297:210–219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parul Kaushik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaushik, P., Singh, H., Devi, A. (2023). Theoretical Evaluation of (Ge20Se80)100−x(Si20Te80)x Quaternary Chalcogenide Glassy Alloy. In: Li, X., Rashidi, M.M., Lather, R.S., Raman, R. (eds) Emerging Trends in Mechanical and Industrial Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-6945-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6945-4_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6944-7

  • Online ISBN: 978-981-19-6945-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics