Skip to main content

Recent Developments and Challenges in Solar Harvesting of Photovoltaic System: A Review

  • Chapter
  • First Online:
Emerging Trends in Mechanical and Industrial Engineering

Abstract

Solar energy is a green and renewable energy source which is commonly used in photovoltaic and thermal cells. Solar power systems are among the fastest developing alternatives to fossil fuels, extending to commercial and industrial applications. As the position of the sun and other significant aspects fluctuate constantly, only a percentage of the sun’s energy potential is a harness. Solar trackers are ideal for enhancing solar panels’ conversion effectiveness by following the sun’s position all day long. This paper is an overview to take full advantage of the PV system by enhancing the solar panel’s conversion efficiency and choosing effective solar tracking. This review describes the basics of PV material and their achieved efficiency for laboratory, commercial, and industrial applications. The key objective of this paper is to create a roadmap of sun-tracking methods, their pros and cons to build an effective, low-cost, and reliable PV system for maximum solar energy harvesting. The study revealed that the active dual-axes closed-loop control based on non-conventional control algorithms could be the best tracking method to maximize the PV system’s output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hultman NE (2007) Can the world wean itself from fossil fuels? Curr Hist 106(703):376

    Article  Google Scholar 

  2. Rotmans J, Swart R (1990) The gloomy greenhouse: should the world phase out fossil fuels? Environ Manage 14(3):291–296

    Article  Google Scholar 

  3. Sampaio PGV, González MOA (2017) Photovoltaic solar energy: conceptual framework. Renew Sustain Energy Rev 74:590–601

    Article  Google Scholar 

  4. Ploetz R, Rusdianasari R, Eviliana E (2016) Renewable energy: advantages and disadvantages. In: Proceeding forum in research, science, and technology (FIRST) 2016. Politeknik Negeri Sriwijaya

    Google Scholar 

  5. Ugli TJT (2019) The importance of alternative solar energy sources and the advantages and disadvantages of using solar panels in this process. Int J Eng Inf Syst (IJEAIS) 3(4)

    Google Scholar 

  6. Lakatos L, Hevessy G, Kovács J (2011) Advantages and disadvantages of solar energy and wind-power utilization. World Futures 67(6):395–408

    Article  Google Scholar 

  7. Mohtasham J (2015) Renewable energies. Energy Procedia 74:1289–1297

    Article  Google Scholar 

  8. IEA As we mark the Paris Agreement’s 5th anniversary, we continue to expand our work on energy and climate, IEA, Paris (2020)

    Google Scholar 

  9. Siecker J, Kusakana K, Numbi BP (2017) A review of solar photovoltaic systems cooling technologies. Renew Sustain Energy Rev 79:192–203

    Article  Google Scholar 

  10. Maradin D (2021) Advantages and disadvantages of renewable energy sources utilization. Int J Energy Econ Policy 11(3):176–183

    Article  Google Scholar 

  11. Nijs J, Sivoththaman S, Szlufcik J, De Clercq K, Duerinckx F, Van Kerschaever E, Einhaus R, Poortmans J, Vermeulen T, Mertens R (1997) Overview of solar cell technologies and results on high efficiency multicrystalline silicon substrates. Sol Energy Mater Sol Cells 48:199–217

    Article  Google Scholar 

  12. Mousazadeh H, Keyhani A, Javadi A, Mobli H, Abrinia K, Sharifi A (2009) A review of principle and sun-tracking methods for maximizing solar systems output. Renew Sustain Energy Rev 13(8):1800–1818

    Article  Google Scholar 

  13. FinsterC (1962) El Heliostato de la Universidad Santa Maria. Scientia 119:5–20

    Google Scholar 

  14. Saavedra A (1963) Diseño de un servo-mecanismo seguidor solar para un instrument registrador de la irradiación solar directa. Mem Univ Técnica Feder St Maria, Valpso, Chile

    Google Scholar 

  15. McFee R (1975) Power collection reduction by mirror surface nonflatness and tracking error for a central receiver solar power system. Appl Opt 14:1493–1502

    Article  Google Scholar 

  16. Dorian ME, Nelson DH (1980) Solar tracking device. Google Patents

    Google Scholar 

  17. Badescu V (1985) The influence of certain astronomical and constructive parameters on the concentration of solar radiation with plane heliostats fields. Rev Phys Appl 20:711–733

    Article  Google Scholar 

  18. Skouri S, Ali ABH, Bouadila S, Salah MB, Nasrallah SB (2016) Design and construction of sun tracking systems for solar parabolic concentrator displacement. Renew Sustain Energy Rev 60:1419–1429

    Article  Google Scholar 

  19. Koussa M, Cheknane A, Hadji S, Haddadi M, Noureddine S (2011) Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions. Appl Energy 88:1756–1771

    Article  Google Scholar 

  20. Sun J, Wang R, Hong H, Liu Q (2017) An optimized tracking strategy for small-scale double- axis parabolic trough collector. Appl Therm Eng 112:1408–1420

    Article  Google Scholar 

  21. Sungur C (2009) Multi-axes sun-tracking system with PLC control for photovoltaic panels in Turkey. Renew Energy 34:1119–1125

    Article  Google Scholar 

  22. Meral ME, Dincer F (2011) A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems. Renew Sustain Energy Rev 15(5):2176–2184

    Article  Google Scholar 

  23. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (version 45). Progress Photovolt: Res Appl 23(1):1–9

    Article  Google Scholar 

  24. Pandey AK, Tyagi VV, Jeyraj A, Selvaraj L, Rahim NA, Tyagi SK (2016) Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew Sustain Energy Rev 53:859–884

    Article  Google Scholar 

  25. Kalogirou SA (2013) Solar energy engineering: processes and systems. Academic Press

    Google Scholar 

  26. Glunz SW, Feldmann F, Richter A, Bivour M, Reichel C, Steinkemper H, Benick J, Hermle M. The irresistible charm of a simple current flow pattern—25% with a solar cell featuring a full-area back

    Google Scholar 

  27. Richter A, Hermle M, Glunz SW (2013) Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J Photovoltaics 3(4):1184–1191. https://doi.org/10.1109/JPHOTOV.2013.2270351

    Article  Google Scholar 

  28. Green MA, Hishikawa Y, Warta W, Dunlop ED, Levi DH, Hohl-Ebinger J, Ho-Baillie AWH (2017) Solar cell efficiency tables (version 50). Prog Photovolt 25:668– 676

    Google Scholar 

  29. Stuckelberger M, Biron R, Wyrsch N, Haug FJ, Ballif C (2017) Progress in solar cells from hydrogenated amorphous silicon. Renew Sustain Energy Rev 76:1497–1523

    Article  Google Scholar 

  30. Matsui T, Maejima K, Bidiville A, Sai H, Koida T, Suezaki T, Matsumoto M, Saito K, Yoshida I, Kondo M (2015) High-efficiency thin-film silicon solar cells realized by integrating stable a-Si: H absorbers into improved device design. Jpn J Appl Phys 54(8S1):08KB10

    Google Scholar 

  31. Feurer T, Reinhard P, Avancini E, Bissig B, Lockinger J, Fuchs P, Carron R, Weiss TP, Perrenoud J, Stutterheim S et al (2017) Progress in thin film CIGS photovoltaics—research and development, manufacturing, and applications. Prog Photovolt 25: 645–667

    Google Scholar 

  32. Ramanujam J, Singh UP (2017) Copper indium gallium selenide based solar cells—a review. Energy Environ Sci 10(6):1306–1319

    Article  Google Scholar 

  33. Solar, First. First Solar sets world record for CdTe solar cell efficiency. 2015–01–08. http://investor.firstsolar. com/releases.cfm (2014)

  34. Basol BM, McCandless B (2014) Brief review of cadmium telluride-based photovoltaic technologies. J Photonics Energy 4(1):040996

    Article  Google Scholar 

  35. Yeoh ME, Chan KY (2021) A review on semi-transparent solar cells for real- life applications based on dye-sensitized technology. IEEE J Photovoltaics

    Google Scholar 

  36. Ji JM, Zhou H, Eom YK, Kim CH, Kim HK (2020) 14.2% efficiency dye‐ sensitized solar cells by co‐sensitizing novel thieno [3, 2‐b] indole‐based organic dyes with a promising porphyrin sensitizer. Adv Energy Mater 10(15): 2000124

    Google Scholar 

  37. Nozik AJ (2002) Quantum dot solar cells. Phys E 14(1–2):115–120

    Article  Google Scholar 

  38. Sogabe T, Shen Q, Yamaguchi K (2016) Recent progress on quantum dot solar cells: a review. J Photonics Energy 6(4):040901

    Article  Google Scholar 

  39. Brunetti V, Chibli H, Fiammengo R, Galeone A, Malvindi MA, Vecchio G, Cingolani R, Nadeau JL, Pompa PP (2013) InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. Nanoscale 5(1):307–317

    Article  Google Scholar 

  40. Habibi M, Zabihi F, Ahmadian-Yazdi MR, Eslamian M (2016) Progress in emerging solution-processed thin film solar cells–Part II: Perovskite solar cells. Renew Sustain Energy Rev 62:1012–1103

    Article  Google Scholar 

  41. "NREL efficiency chart”

    Google Scholar 

  42. Xue R, Zhang J, Li Y, Li Y (2018) Organic solar cell materials toward commercialization. Small 14(41):1801793

    Article  Google Scholar 

  43. Cui Y, Yao H, Hong L, Zhang T, Tang Y, Lin B, Xian K, Gao B, An C, Bi P, Ma W (2020) Organic photovoltaic cell with 17% efficiency and superior processability. Nat Sci Rev 7(7):1239–1246

    Google Scholar 

  44. Frankl P, Nowak S, Gutschner M, Gnos S, Rinke T (2010) International energy agency technology roadmap: solar photovoltaic energy

    Google Scholar 

  45. Philipps SP, Bett AW, Horowitz K, Kurtz S (2015 Current status of concentrator photovoltaic (CPV) technology (No. NREL/TP-5J00–65130). National Renewable Energy Lab (NREL), Golden, CO (United States)

    Google Scholar 

  46. Mcconnell D (2011) Renewable energy technology cost review

    Google Scholar 

  47. Batayneh W, Bataineh A, Soliman I, Hafees SA (2019) Investigation of a single-axis discrete solar tracking system for reduced actuations and maximum energy collection. Autom Constr 98:102–109

    Google Scholar 

  48. Zhu Y, Liu J, Yang X (2020) Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection. Appl Energy 264:114647

    Article  Google Scholar 

  49. Kuttybay N, Saymbetov A, Mekhilef S, Nurgaliyev M, Tukymbekov D, Dosymbetova G, Meiirkhanov A, Svanbayev Y (2020) Optimized single-axis schedule solar tracker in different weather conditions. Energies 13(19):5226

    Article  Google Scholar 

  50. Geolounge (2014) Latitude and longitude. https://www.geolounge.com/latitudelongitude. Accessed 15 March

  51. Karafil A, Ozbay H, Kesler M, Parmaksiz H (2015) Calculation of optimum fixed tilt angle of PV panels depending on solar angles and comparison of the results with experimental study conducted in summer in Bilecik, Turkey. In 2015 9th International conference on electrical and electronics engineering (ELECO). IEEE, pp 971-–976

    Google Scholar 

  52. Yilmaz S, Ozcalik HR, Dogmus O, Dincer F, Akgol O, Karaaslan M (2015) Design of two axes sun tracking controller with analytically solar radiation calculations. Renew Sustain Energy Rev 43:997–1005

    Article  Google Scholar 

  53. Sawant A, Bondre D, Joshi A, Tambavekar P, Deshmukh A (2018) Design and analysis of automated dual axis solar tracker based on light sensors. In: 2018 2nd International conference on I-SMAC (IoT in social, mobile, analytics and cloud) (I-SMAC) I-SMAC (IoT in social, mobile, analytics and cloud) (I-SMAC), 2018 2nd international conference on. IEEE, pp 454–459

    Google Scholar 

  54. De Melo KB, De Paula BHK, Da Silva MK, Narváez DI, Moreira HS, Villalva MG, De Siqueira TG (2019) A study on the influence of locality in the viability of solar tracker systems. In: Congresso Brasileiro de Automática-CBA, vol 1, No. 1

    Google Scholar 

  55. Mpodi EK, Tjiparuro Z, Matsebe O (2019) Review of dual axis solar tracking and development of its functional model. Procedia Manuf 35:580–588

    Article  Google Scholar 

  56. Kesava AAAEP, Lim W (2018) Triple-axis tracking control algorithm for maximizing solar energy harvesting on a moving platform. ARPN J Eng Appl Sci 13:4617–4624

    Google Scholar 

  57. Haider MR, Shufian A, Alam MN, Hossain MI, Islam R, Azim MA (2021) Design and implementation of three-axis solar tracking system with high efficiency. In: 2021 International conference on information and communication technology for sustainable development (ICICT4SD). IEEE, pp 1–5

    Google Scholar 

  58. Awad H, Moawad S, Atalla A (2018) Experimental comparison between microcontrollers and programmable logic controllers in sun tracking applications. In: 2018 twentieth international middle east power systems conference (MEPCON). IEEE, pp 58–63

    Google Scholar 

  59. Singh J (2019) Comparative analysis of existing latest microcontroller development boards. In: Emerging research in electronics, computer science and technology. Springer, Singapore, pp 1011–1025

    Google Scholar 

  60. Hassan R, Abubakar B (2020) Intelligent arduino based automatic solar tracking system using light dependent resistors (LDRs) and servo motor. Optics 9(2):13

    Article  Google Scholar 

  61. Naif YH (2020) Design of Arduino-based dual axis solar tracking system. JAREE (J Adv Res Electr Eng) 4(2)

    Google Scholar 

  62. Elsherbiny MS, Anis WR, Hafez IM, Mikhail AR (2017) Design of single-axis and dual-axis solar tracking systems protected against high wind speeds. Int J Sci Technol Res 6(9):84–89

    Google Scholar 

  63. Chin CS, Babu A, McBride W (2011) Design, modeling and testing of a standalone single axis active solar tracker using MATLAB/Simulink. Renew Energy 36(11):3075–3090

    Article  Google Scholar 

  64. Kanyarusoke KE, Gryzagoridis J, Oliver G (2015) Are solar tracking technologies feasible for domestic applications in rural tropical Africa? J Energy Southern Africa 26(1):86–95

    Article  Google Scholar 

  65. Muhammad JYU, Jimoh MT, Kyari IB, Gele MA, Musa I (2019) A review on solar tracking system: a technique of solar power output enhancement. Eng Sci 4(1):1–11

    Article  Google Scholar 

  66. Zulkafli RS, Bawazir AS, Amin NAM, Hashim MSM, Majid MSA, Nasir NFM (2018) Dual axis solar tracking system in Perlis, Malaysia. J Telecommun Electron Comput Eng (JTEC) 10(1–14):91–94

    Google Scholar 

  67. Brito MC, Po JM, Pereira D, Simoes F, Rodriguez R, Amador JC (2019) Passive solar tracker based in the differential thermal expansion of vertical strips. J Renew Sust Energy 11(4):043701

    Article  Google Scholar 

  68. Algifri AH, Al-Towaie HA (2001) Efficient orientation impacts of box-type solar cooker on the cooker performance. Sol Energy 70(2):165–170

    Article  Google Scholar 

  69. Yakup MABHM, Malik AQ (2001) Optimum tilt angle and orientation for solar collector in Brunei Darussalam. Renew Energy 24(2):223–234

    Google Scholar 

  70. Beshears DL, Capps GJ, Earl DD, Jordan JK, Maxey LC, Muhs JD, Leonard TM (2003) Tracking systems evaluation for the “hybrid lighting system”. Int Solar Energy Conf 36762:699–708

    Google Scholar 

  71. Grena R (2008) An algorithm for the computation of the solar position. Sol Energy 82(5):462–470

    Article  Google Scholar 

  72. Mi Z, Chen J, Chen N, Bai Y, Fu R, Liu H (2016) Open-loop solar tracking strategy for high concentrating photovoltaic systems using variable tracking frequency. Energy Convers Manage 117:142–149

    Article  Google Scholar 

  73. Fuentes-Morales RF, Diaz-Ponce A, Pena-Cruz MI, Rodrigo PM, Valentín- Coronado LM, Martell-Chavez F, Pineda-Arellano CA (2020) Control algorithms applied to active solar tracking systems: a review. Sol Energy 212:203–219

    Article  Google Scholar 

  74. Maish AB (1990) Performance of a self-aligning solar array tracking controller (No. SAND-89–2571C; CONF-900542–2). Sandia National Labs., Albuquerque, NM (USA)

    Google Scholar 

  75. Brown DG, Stone KW (1993) High accuracy/low cost tracking system for solar concentrators using a neural network. SAE, WARRENDALE, PA (USA), 2, pp 577–584

    Google Scholar 

  76. Yousef HA (1999) Design and implementation of a fuzzy logic computer- controlled sun tracking system. In: ISIE'99 proceedings of the IEEE international symposium on industrial electronics (Cat. No. 99TH8465), vol 3. IEEE, pp 1030–1034

    Google Scholar 

  77. Zhang J, Yin Z, Jin P (2019) Error analysis and auto correction of hybrid solar tracking system using photo sensors and orientation algorithm. Energy 182:585–593

    Article  Google Scholar 

  78. Safan YM, Shaaban S, El-Sebah MIA (2017) Hybrid control of a solar tracking system using SUI-PID controller. In: 2017 Sensors networks smart and emerging technologies (SENSET). IEEE, pp 1–4

    Google Scholar 

  79. Yeh HY, Lee CD (2012) The logic-based supervisor control for sun-tracking system of 1 MW HCPV demo plant: study case. Appl Sci 2(1):100–113

    Article  Google Scholar 

  80. Kiyak E, Gol G (2016) A comparison of fuzzy logic and PID controller for a single-axis solar tracking system. Renew Wind Water Solar 3(1):1–14

    Google Scholar 

  81. Huang CH, Pan HY, Lin KC (2016) Development of intelligent fuzzy controller for a two-axis solar tracking system. Appl Sci 6(5):130

    Article  Google Scholar 

  82. Robles Algarín C, Sevilla Hernández D, Restrepo Leal D (2018) A low-cost maximum power point tracking system based on neural network inverse model controller. Electronics 7(1):4

    Article  Google Scholar 

  83. Arif EMH, Hossen J, Ramana G, Bhuvaneswari T, Velrajkumar P, Venkataseshaiah C (2018) A survey on neuro-fuzzy controllers for solar panel tracking systems. Far East J Electron Commun 18(7):981–1003

    Article  Google Scholar 

  84. Aldair AA, Obed AA, Halihal AF (2016) Design and implementation of neuro- fuzzy controller using FPGA for sun tracking system. Iraqi J Electr Electron Eng 12(2)

    Google Scholar 

  85. Mashohor S, Samsudin K, Noor AM, Rahman ARA (2008) Evaluation of genetic algorithm based solar tracking system for photovoltaic panels. In: 2008 IEEE international conference on sustainable energy technologies. IEEE, pp 269–273

    Google Scholar 

  86. Mohanta JC, Keshari A (2019) A knowledge based fuzzy-probabilistic roadmap method for mobile robot navigation. App Soft Comput 79:391–409, ISSN 1568–4946, https://doi.org/10.1016/j.asoc.2019.03.055

  87. Sanyal A, Nayab Zafar M, Mohanta JC, Faiyaz Ahmed M (2021) Path planning approaches for mobile robot navigation in various environments: a review. In: Kumar N, Tibor S, Sindhwani R, Lee J, Srivastava P (eds) Advances in interdisciplinary engineering. lecture notes in mechanical engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-9956-9_55

  88. Bosi M, Pelosi C (2007) The potential of III-V semiconductors as terrestrial photovoltaic devices. Prog Photovoltaics Res Appl 15(1):51–68

    Article  Google Scholar 

  89. Solanki CS, Beaucarne G (2007) Advanced solar cell concepts. Energy Sustain Dev 11(3):17–23

    Article  Google Scholar 

  90. Toivola M, Halme J, Miettunen K, Aitola K, Lund PD (2009) Nanostructured dye solar cells on flexible substrates. Int J Energy Res 33(13):1145–1160

    Article  Google Scholar 

  91. Hillhouse HW, Beard MC (2009) Solar cells from colloidal nanocrystals: fundamentals, materials, devices, and economics. Curr Opin Colloid Interface Sci 14(4):245–259

    Article  Google Scholar 

  92. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(7):1924–1945

    Article  Google Scholar 

  93. Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362):425–427

    Article  Google Scholar 

  94. Goswami DY, Vijayaraghavan S, Lu S, Tamm G (2004) New and emerging developments in solar energy. Sol Energy 76(1–3):33–43

    Article  Google Scholar 

  95. Miles RW, Zoppi G, Forbes I (2007) Inorganic photovoltaic cells. Mater Today 10(11):20–27

    Article  Google Scholar 

  96. Günes S, Sariciftci NS (2008) Hybrid solar cells. Inorganica Chimica Acta 361(3):581–588. Goetzberger A, Hebling C, Schock HW (2003) Photovoltaic materials, history, status and outlook. Mater Sci Eng R: Reports 40(1):1–46

    Google Scholar 

  97. Guha S, Yang J (2006) Progress in amorphous and nanocrystalline silicon solar cells. J Non-Cryst Solids 352(9–20):1917–1921

    Article  Google Scholar 

  98. Sidek MHM, Azis N, Hasan WZW, Ab Kadir MZA, Shafie S, Radzi MAM (2017) Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control. Energy 124:160–170

    Article  Google Scholar 

  99. Pachauri RK, Mahela OP, Khan B, Kumar A, Agarwal S, Alhelou HH, Bai J (2021) Development of arduino assisted data acquisition system for solar photovoltaic array characterization under partial shading conditions. Comput Electr Eng 92:107175

    Article  Google Scholar 

  100. Ahmed MF, Mohanta JC, Zafar MN (2022) Development of smart quadcopter for autonomous overhead power transmission line inspections. Mater Today Proc 51(1):261–268, ISSN 2214–7853, https://doi.org/10.1016/j.matpr.2021.05.271

  101. Ahmed MF, Zafar MN, Mohanta JC (2020) Modeling and analysis of quadcopter F450 frame. In: 2020 international conference on contemporary computing and applications (IC3A), pp 196–201. https://doi.org/10.1109/IC3A48958.2020.233296

  102. Khan RA, Mahmood MR, Haque A (2018) Enhanced energy extraction in an open loop single-axis solar tracking PV system with optimized tracker rotation about tilted axis. J Renew Sustain Energy 10(4):045301

    Article  Google Scholar 

  103. Mollahasanoglu M, Okumus Hİ (2021) Performance evaluation of the designed two-axis solar tracking system for Trabzon. IETE J Res 1–13

    Google Scholar 

  104. Makhija S, Khatwani A, Khan MF, Goel V, Roja MM. Design and implementation of an automated dual-axis solar tracker with data-logging. In: 2017 international conference on inventive systems and control (ICISC). IEEE, pp 1–4

    Google Scholar 

  105. Okandeji AA, Olajide MB, Olasunkanmi GO, Jagun ZO (2020) Analysis and implementation of a solar tracking rack system. Niger J Technol 39(3):871–886

    Article  Google Scholar 

  106. Zakariah A, Jamian JJ, Yunus MAM (2015) Dual-axis solar tracking system based on fuzzy logic control and light dependent resistors as feedback path elements. In: 2015 IEEE student conference on research and development (SCOReD). IEEE, pp 139–144

    Google Scholar 

  107. Safan YM, Shaaban S, El-Sebah MIA (2017) Hybrid control of a solar tracking system using SUI-PID controller. In: 2017 Sensors networks smart and emerging technologies (SENSET). IEEE, pp 1–4

    Google Scholar 

  108. Azizi K, Ghaffari A (2013) Design and manufacturing of a high-precision sun tracking system based on image processing. Int J Photoenergy

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Sanyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanyal, A., Ahmed, M.F., Mohanta, J.C. (2023). Recent Developments and Challenges in Solar Harvesting of Photovoltaic System: A Review. In: Li, X., Rashidi, M.M., Lather, R.S., Raman, R. (eds) Emerging Trends in Mechanical and Industrial Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-6945-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6945-4_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6944-7

  • Online ISBN: 978-981-19-6945-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics