Skip to main content

Investigating the Impact of Schmitt Trigger on SRAM Cells at 32 nm Technology Node for Low Voltage Applications

  • Conference paper
  • First Online:
Advances in VLSI and Embedded Systems

Abstract

In this paper Schmitt trigger based three different static random access memory bit cells–7, 9 and 10 T–are designed at a 32 nm technology node and their results are analyzed. The static noise margin obtained for 7, 9, and 10 T SRAM bit cells for hold operation are–22, 131, and 126 mV respectively. While, for the read operation the noise margin values are–22, 131, and 27 mV respectively. The dynamic write analysis reveals that the 9 T SRAM cell has a minimal pulse width requirement of 35 ns for a successful write operation. These cache memories are subject to temperature variation operation. Therefore, the Schmitt trigger based bit cells are analyzed by varying temperatures from −10 to 110 ℃. The temperature variation analysis demonstrates 10 T SRAM cell has the least variation in static performance. Another parameter used to compare the performance of the cells is leakage current. This identifies 9 T SRAM bit cell has the maximum leakage current with 635 pA and 630 pA for Q = ‘0’ and ‘1’ respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calhoun, B., & Chandrakasan, A. (2006). Static noise margin variation for sub-threshold SRAM in 65-nm CMOS. IEEE Journal on Solid-State Circuits, 41(7), 1673–1679.

    Article  Google Scholar 

  2. Toh, S. O., Guo, Z., Liu, T. J. K., & Nikolic, B. (2011). Characterization of dynamic SRAM stability in 45nm CMOS. IEEE Journal on Solid-State Circuits, 46(11), 2702–2712.

    Google Scholar 

  3. Rawat, G., Rathore, K., Goyal, S., Kala, S., & Mittal, P. (2015). Design and analysis of ALU: Vedic mathematics approach. In International Conference on Computing, Communication & Automation (pp. 1372–1376).

    Google Scholar 

  4. Chang, M. H., Chiu, Y. T., & Hwang, W. (2012). Design and iso-area Vmin analysis of 9T subthreshold SRAM with bit-interleaving scheme in 65-nm CMOS. IEEE Transactions on Circuits Systems II: Express Briefs, 59(7), 429–433.

    Google Scholar 

  5. Chang, I. J., Kim, J. J., Park, S. P., & Roy, K. (2009). A 32 kb 10T subthreshold SRAM cell array with bit-interleaving and differential read scheme in 90 nm CMOS. IEEE Journal on Solid-State Circuits, 44(2), 650–658.

    Article  Google Scholar 

  6. Chang, L., Montoye, R. K., Nakamura, Y., Batson, K. A., Eickemeyer, R. J., Dennard, R. H., Haensch, W., & Jamsek, D. (2008). An 8T-SRAM for variability tolerance and low-voltage operation in high-performance caches. IEEE Journal on Solid-State Circuits., 43(4), 956–963.

    Article  Google Scholar 

  7. Pasandi, G., & Fakhraie, S. M. (2015). A 256-kb 9T near-threshold SRAM with 1k cells per bitline and enhanced write and read operations. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(11), 2438–2446.

    Google Scholar 

  8. Rawat, B., & Mittal, P. (2021). Single bit line accessed high high performance ultra low voltage operating 7T SRAM bit cell with improved read stability. International Journal of Circuit Theory and Application, 49(5), 1435–1449.

    Article  Google Scholar 

  9. Ahmad, S., Gupta, M. K., Alam, N., & Hasan, M. (2016). Single-ended Schmitt-trigger-based robust low-power SRAM cell. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(8), 2634–2642.

    Google Scholar 

  10. Mishra, N., Mittal, P., & Kumar, B. (2019). Analytical modeling for static and dynamic response of organic pseudo all-p inverter circuits. Journal of Computational Electronics., 18(4), 1490–1500.

    Article  Google Scholar 

  11. Mukhopadhyay, S., Mahmoodi, H., & Roy, K. (2005) Modeling of failure probability and statistical design of SRAM array for yield enhancement in nanoscaled CMOS. IEEE Transactions on Computer Aided Design (CAD) Integrated Circuits Systems, 24(12), 1859–1880.

    Google Scholar 

  12. Yoshinobu, N., Masahi, H., Takayuki, K., & Itoh, K. (2003). Review and future prospects of low-voltage RAM circuits. IBM Journal for Research and Development, 47(5/6), 525–552.

    Google Scholar 

  13. Kumar, N., Mittal, P. (2020). Performance analysis of FinFET based 2:1 multiplexers for low power application. In 6th Students’ Conference on Engineering and Systems.

    Google Scholar 

  14. Rabaey, J., Chandrakasan, A., & Nikolic, B. (2002). Digital integrated circuits: A design perspective (2nd ed.). Prentice-Hall.

    Google Scholar 

  15. Singh, J., Mohanty, S. P., & Pradhan, D. K. (2013). Robust SRAM designs and analysis. Springer.

    Book  Google Scholar 

  16. Kulkarni, J. P., & Roy, K. (2012). Ultralow-voltage process-variation-tolerant schmitt-trigger-based SRAM design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(2), 319–332.

    Google Scholar 

  17. Zhang, A., Srivastava, A., & Ajmera, P. K. (2003). Low voltage CMOS schmitt trigger circuit. Electron Letters, 39(24), 1696–1698.

    Article  Google Scholar 

  18. Sanapala, K. R. S., Yeo, S. S. (2018). Schmitt trigger-based single-ended 7T SRAM cell for Internet of Things (IoT) Applications. Journal of Supercomputing, 74, 4613–4622.

    Google Scholar 

  19. Raj, K., Kumar, B., & Mittal, P. (2009). FPGA implementation and mask level CMOS layout design of redundant binary signed digit comparator. IJCSNS, 9(9), 107.

    Google Scholar 

  20. Cho, K., Park, J., Oh, T. W., & Jung, S. O. (2020). One-sided Schmitt Trigger Based 9T SRAM Cell for Near Threshold Operation. IEEE Transaction on Circuits and Systems I: Regular Papers., 67(5), 1551–1561.

    Article  Google Scholar 

  21. Kulkarni, J., Kim, K., & Roy, K. (2007). A 160 mV robust Schmitt trigger based sub-threshold SRAM cell. IEEE Journal on Solid-State Circuits, 42(10), 2303–2313.

    Article  Google Scholar 

  22. Rawat, B., & Mittal, P. (2021) Single bit line accessed high performance ultra low voltage operating 7-T SRAM cell with improved read stability. Semiconductor Science and Technology, 36(9).

    Google Scholar 

  23. Kang, S., Leblebici, Y., Kim, C. (2015). CMOS digital integrated circuits (3rd ed., pp. 204–422). McGraw-Hill.

    Google Scholar 

  24. Rawat, B., Gupta, K., & Goel, N. (2018). Low voltage 7T SRAM bit cell in 32 nm CMOS technology node. In 2018 International Conference of Computing, Power, and Communications Technologies (GUCON).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhawna Rawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rawat, B., Mittal, P. (2023). Investigating the Impact of Schmitt Trigger on SRAM Cells at 32 nm Technology Node for Low Voltage Applications. In: Darji, A.D., Joshi, D., Joshi, A., Sheriff, R. (eds) Advances in VLSI and Embedded Systems. Lecture Notes in Electrical Engineering, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-19-6780-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6780-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6779-5

  • Online ISBN: 978-981-19-6780-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics