Skip to main content

Grading of Diabetic Retinopathy Using Machine Learning Techniques

  • Conference paper
  • First Online:
Proceedings of International Conference on Data Science and Applications

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 551))

  • 451 Accesses

Abstract

Diabetic retinopathy (DR) is a vision-threatening eye disease caused by blood vessel damage. Diabetes patients are commonly affected by DR, and early detection is essential to avoid vision loss. The proposed system uses Indian diabetic retinopathy image dataset (IDRiD) and enhances it using Partial Differential Equation (PDE). Morphological operations are used to detect lesions like microaneurysms, exudates, and haemorrhages, and the clinical features include the area of blood vessels, area and count of the lesions are extracted. The Grey Level Co-occurrence Matrix is used to extract statistical features (GLCM). The extracted 7 clinical and 11 statistical features are fed into machine learning classifiers such as feed forward neural network (FFNN), support vector machine (SVM), and k-nearest neural network (KNN) for DR classification with two and five classes. The performance metrics sensitivity, specificity, accuracy, negative predictive value, and positive predictive value are calculated, and the accuracy obtained for two class classification for FFNN, SVM, and KNN are 95, 95, and 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya U, Kim C, Ng E, Tamura T (2009) Computer-based detection of diabetes retinopathy stages using digital fundus images. J Eng Med 223(5):545–553

    Article  Google Scholar 

  2. Saranya P, Umamaheswari, Sivaram, Jain, Bagchi (2021) Classification of different stages of diabetic retinopathy using convolutional neural networks. In: 2nd International proceedings on computation, automation and knowledge management (ICCAKM). IEEE, Dubai, pp 59–64

    Google Scholar 

  3. Wang, Lu, Wang, Chen (2018) Diabetic retinopathy stage classification using convolutional neural networks. In: International proceedings on information reuse and integration (IRI). IEEE, USA, pp. 465–471

    Google Scholar 

  4. Anitha J, Priyadharshini M (2014) A region growing method of optic disc segmentation in retinal images. In: International proceedings on electronics and communication systems. IEEE, Coimbatore, pp 1–5

    Google Scholar 

  5. Dey, Roy, Das, Chaudhuri (2012) Optic cup to disc ratio measurement for glaucoma diagnosis using harris corner. In: 3rd International proceedings on computing, communication, and networking technologies. IEEE, Coimbatore, pp 1–5

    Google Scholar 

  6. Bharkad S (2017) Automatic segmentation of optic disc in color fundus retinal images. Biomed Signal Process Control 31:483–498

    Article  Google Scholar 

  7. Rezia, Nahid M (2018) Automatic detection of optic disc in color fundus retinal images using circle operator. Biomed Signal Process Control 45:274–283

    Google Scholar 

  8. Kulkarni, Annadate (2017) Optic disc segmentation using graph cut technique. In: 3rd international proceedings on sensing, signal processing and security. IEEE, Chennai, pp 124–127

    Google Scholar 

  9. Pal, Chatterjee (2017) Mathematical morphology aided optic disk segmentation from retinal images. In: 3rd international proceedings on condition assessment techniques in electrical systems. IEEE, Rupnagar, pp 380–385

    Google Scholar 

  10. Rodrigues, Marangoni (2017) Segmentation of optic disc and blood vessels in retinal images using wavelets, mathematical morphology and Hessian-based multi-scale filtering. Biomed Signal Process Control 36:39–49

    Google Scholar 

  11. Thakur, Juneja (2018) Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomed Signal Process Control 42:162–189

    Google Scholar 

  12. Haleem, Han, Hemert, Li, Fleming, Pasquale, Song (2018) A novel adaptive deformable model for automated optic disc and cup segmentation to aid glaucoma diagnosis. J Med Syst 42(1):20

    Google Scholar 

  13. Shree, Revanth K, Raja N, Rajinikanth V (2018) A hybrid image processing approach to examine abnormality in retinal optic disc. Procedia Comput Sci 125:157–164

    Google Scholar 

  14. Sevastopolsky, Artem (2017) Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. Pattern Recogn Image Anal 27(3):618–624

    Google Scholar 

  15. Sun, Kuan, Hanhui (2015) Optic disc segmentation by ballon snake with texture from color fundus images. J Biomed Imaging 4:1–14

    Google Scholar 

  16. Miri, Abramoff, Lee, Niemeijer, Wang, Kwon, Garvin (2015) Multimodal segmentation of optic disc and cup from SD-OCT and color fundus photographs using a machine-learning graph-based approach. IEEE Trans Med Imaging 34(9):1854–1866

    Google Scholar 

  17. Reis, Sharpe, Yang, Nicolela, Burgoyne, Chauhan (2012) Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography. Ophthalmology 119(4):738–747

    Google Scholar 

  18. Shankaranarayana, Ram, Mitra, Sivaprakasam (2017) Joint optic disc and cup segmentation using fully convolutional and adversarial networks. In: International proceedings on fetal, infant and ophthalmic medical image analysis. Springer, Cham, pp 168–176

    Google Scholar 

  19. Enrique, Gonzalez, Carrera (2017) Automated detection of diabetic retinopathy using SVM. In: 14th international proceedings on electronics, electrical engineering and computing. IEEE, Peru, pp 1–4

    Google Scholar 

  20. Alyoubi, Abulkhair, Shalash (2021) Diabetic retinopathy fundus image classification and lesions localization system using deep learning. Sensors 21(11):1–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Asha Gnana Priya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asha Gnana Priya, H., Anitha, J. (2023). Grading of Diabetic Retinopathy Using Machine Learning Techniques. In: Saraswat, M., Chowdhury, C., Kumar Mandal, C., Gandomi, A.H. (eds) Proceedings of International Conference on Data Science and Applications. Lecture Notes in Networks and Systems, vol 551. Springer, Singapore. https://doi.org/10.1007/978-981-19-6631-6_44

Download citation

Publish with us

Policies and ethics