Skip to main content

Energy-Efficient Incremental Control Allocation for Transition Flight via Quadratic Programming

  • Conference paper
  • First Online:
Advances in Guidance, Navigation and Control ( ICGNC 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 845))

Included in the following conference series:

Abstract

The transition flight of VTOL (vertical take-off and landing) aircraft is generally energy-consuming. This paper proposes an energy-efficient incremental control allocation method for transition flight control. To minimize energy consumption in the time increment, a secondary objective is incorporated into the total cost function when implementing control allocation. This energy increment is equated to the power increment and is estimated using its sensitivities to all control inputs. The final control allocation problem comes in the form of quadratic programming and is efficiently solved by a warm-start active set algorithm. This energy-efficient allocation is embedded in the INDI controller to control the trajectory of a VTOL model. Its performance is compared to open-loop optimal control results and the performance achieved with the weighted least square (WLS) and the redistributed pseudoinverse (RPI) methods. Results show that the INDI controller with the energy-efficient control allocation effectively reduces energy consumption while maintaining accurate trajectory tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boskovic, J., Mehra, R.: Control allocation in overactuated aircraft under position and rate limiting. In: Proceedings Of The 2002 American Control Conference (IEEE Cat. No. CH37301), vol. 1, pp. 791–796 (2002). https://doi.org/10.1109/ACC.2002.1024911

  2. Durham, W., Bolling, J., Bordignon, K.: Minimum drag control allocation. J. Guidance Control Dyn. 20, 190–193 (1997). https://doi.org/10.2514/2.4018

    Article  Google Scholar 

  3. Bodson, M.: Evaluation of optimization methods for control allocation. J. Guidance Control Dyn. 25, 703–711 (2002). https://doi.org/10.2514/2.4937

    Article  Google Scholar 

  4. Johansen, T., Fossen, T.: Control allocation - a survey. Automatica 49, 1087–1103 (2013). https://doi.org/10.1016/j.automatica.2013.01.035

    Article  MathSciNet  MATH  Google Scholar 

  5. Dyer, E., Sirouspour, S., Jafarinasab, M.: Energy optimal control allocation in a redundantly actuated omnidirectional UAV. In: 2019 International Conference On Robotics And Automation (ICRA), pp. 5316–5322 (2019). https://doi.org/10.1109/ICRA.2019.8793549

  6. Pfeifle, O., Fichter, W.: Energy optimal control allocation for INDI controlled transition aircraft. In: AIAA Scitech 2021 Forum, p. 1457 (2021). https://doi.org/10.2514/6.2021-1457

  7. Di Francesco, G., Mattei, M.: Modeling and incremental nonlinear dynamic inversion control of a novel unmanned tiltrotor. J. Aircraft. 53, 73–86 (2016). https://doi.org/10.2514/1.C033183

    Article  Google Scholar 

  8. Raab, S., Zhang, J., Bhardwaj, P., Holzapfel, F.: Proposal of a unified control strategy for vertical take-off and landing transition aircraft configurations. In: 2018 Applied Aerodynamics Conference, p. 3478 (2018). https://doi.org/10.2514/6.2018-3478

  9. Raab, S., Zhang, J., Bhardwaj, P., Holzapfel, F.: Consideration of control effector dynamics and saturations in an extended INDI approach. In: AIAA Aviation 2019 Forum, p. 3267 (2019). https://doi.org/10.2514/6.2019-3267

  10. Holzapfel, F.: Nichtlineare adaptive Regelung eines unbemannten Fluggerätes. (Technische Universität München (2004). https://doi.org/10.2514/2.4018

  11. Smith, P.A.: Simplified approach to nonlinear dynamic inversion based flight control. In: 23rd Atmospheric Flight Mechanics Conference, p. 4461 (1998). https://doi.org/10.2514/6.1998-4461

  12. Zhang, J., Bhardwaj, P., Raab, S., Saboo, S., Holzapfel, F.: Control allocation framework for a tilt-rotor vertical take-off and landing transition aircraft configuration. In: 2018 Applied Aerodynamics Conference, p. 3480 (2018)

    Google Scholar 

  13. Zhang, J., Bhardwaj, P., Raab, S., Holzapfel, F.: Control allocation framework with SVD-based protection for a tilt-rotor VTOL transition air vehicle. In: AIAA Aviation 2019 Forum, p. 3265 (2019). https://doi.org/10.2514/6.2018-3480

  14. Haichao, H., Grüter, B., Piprek, P., Holzapfel, F.: Smooth free-cycle dynamic soaring in unspecified shear wind via quadratic programming. Chinese J. Aeronaut. 35(7), 19–29 (2021). https://doi.org/10.1016/j.cja.2021.09.012

  15. Hong, H., Piprek, P., Gerdts, M., Holzapfel, F.: Computationally efficient trajectory generation for smooth aircraft flight level changes. J. Guidance Control Dyn. 44, 1532–1540 (2021). https://doi.org/10.2514/1.G005529

    Article  Google Scholar 

  16. Lu, Z., Hong, H., Diepolder, J., Holzapfel, F.: Maneuverability set estimation and trajectory feasibility evaluation for eVTOL aircraft (2022)

    Google Scholar 

  17. Rieck, M., et al.: FALCON.m user guide: version 1.27. Institute of Flight System Dynamics, Technical University of Munich (2022). http://www.falcon-m.com

  18. Harkegard, O.: Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation. In: Proceedings of The 41st IEEE Conference on Decision and Control, vol. 2, pp. 1295–1300 (2002). https://doi.org/10.1109/CDC.2002.1184694

  19. Virnig, J., Bodden, D.: Multivariable control allocation and control law conditioning when control effectors limit. In: Guidance, Navigation, And Control Conference, p. 3609 (1994). https://doi.org/10.2514/6.1994-3609

  20. Lu, Z., Tang, P., Zhang, S.: Incremental nonlinear dynamic inversion based control allocation approach for a BWB UAV. In: 2018 IEEE CSAA Guidance, Navigation And Control Conference (CGNCC), pp. 1–6 (2018). https://doi.org/10.1109/GNCC42960.2018.9019118

Download references

Acknowledgements

Zhidong Lu, Hangxu Li, and Ruichen He acknowledge the support of the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Z., Li, H., He, R., Holzapfel, F. (2023). Energy-Efficient Incremental Control Allocation for Transition Flight via Quadratic Programming. In: Yan, L., Duan, H., Deng, Y. (eds) Advances in Guidance, Navigation and Control. ICGNC 2022. Lecture Notes in Electrical Engineering, vol 845. Springer, Singapore. https://doi.org/10.1007/978-981-19-6613-2_478

Download citation

Publish with us

Policies and ethics