Skip to main content

Robust Coordinated Tracking of Saturated Multi-agent Systems: A Dynamic Input Saturation Reconstruction Approach

  • Conference paper
  • First Online:
Advances in Guidance, Navigation and Control ( ICGNC 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 845))

Included in the following conference series:

  • 148 Accesses

Abstract

This paper explores the dynamic saturation reconstruction approach to deal with the robust coordinated tracking of saturated multi-agent systems. The first-order differential equation of the dynamic saturation function is constructed and given in quadratic form with the unrestricted control input affected by bounded input disturbance. It is shown that the dynamic saturation reconstruction function and the adaptive control input that restrict and influence each other can achieve consensus tracking, and resolve the contradiction between high performance and saturation limits. Finally, simulation results show that the actual engineering situation can be perfect by adjusting the coefficients of dynamic saturation function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, Y., Yu, W., Ren, W.: An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. Industr. Inf. 9(1), 427–438 (2013)

    Article  Google Scholar 

  2. Xu, X.L., Chen, S.Y., Huang, W., Gao, L.X.: Leader-following consensus of discrete-time multi-agent systems with observer-based protocols. IEEE Trans. Autom. Control 118(11), 334–341 (2013)

    Google Scholar 

  3. Cai, H., Huang, J., Institute, S.: Leader-following adaptive consensus of multiple uncertain rigid spacecraft systems. IEEE Sci. China (Inf. Sci.) 59, 1–13 (2016)

    Article  Google Scholar 

  4. Zou, A.M., Kumar, K.D.: Distributed attitude coordination control for spacecraft formation flying. IEEE Trans. Aerosp. Electron. Syst. 48(2), 1329–1346 (2012)

    Article  Google Scholar 

  5. Liu, T., Lu, X., Jiang, Z.P.: A junction-by-junction feedback-based strategy with convergence analysis for dynamic traffic assignment. Sci. China Inf. Sci. 59, 1–17 (2016)

    Article  Google Scholar 

  6. Ren, W., Chao, H., Bourgeous, W.: Experimental validation of consensus algorithms for multivehicle cooperative control. IEEE Trans. Control Syst. Technol. 16(4), 745–752 (2008)

    Article  Google Scholar 

  7. Stein, G.: Respect the unstable. IEEE Control Syst. Mag. 23(4), 12–25 (2003)

    Article  Google Scholar 

  8. Li, Z., Duan, Z., Lewis, F.: Distributed Robust Consensus Control of Multi-agent Systems with Heterogeneous Matching Uncertainties. Pergamon Press, Inc., Oxford (2013)

    Google Scholar 

  9. Chen, G., Lewis, F.L.: Robust consensus of multiple inertial agents with coupling delays and variable topologies. Int. J. Robust Nonlinear Control 21(6), 666–685 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Su, H., Chen, M., Chen, G.: Robust semi-global coordinated tracking of linear multi-agent systems with input saturation. Int. J. Robust Nonlinear Control 25(14), 2375–2390 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, X., Su, H., Wang, X.: Robust semi-global coordinated tracking of saturated networked systems. IFAC-Papers OnLine 50(1), 8303–8308 (2017)

    Article  Google Scholar 

  12. Shi, L., Zhao, Z., Lin, Z.: Robust semi-global leader-following practical consensus of a group of linear systems with imperfect actuators. Sci. China Inf. Sci. 60(7), 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  13. Shi, L., Zhao, Z., Lin, Z.: Robust semi-global leaderless consensus and containment control of identical linear systems with imperfect actuators. J. Syst. Sci. Complexity 31(1), 69–86 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, X., Su, H., Chen, M.Z.Q.: Observer-based robust coordinated control of multiagent systems with input saturation. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1933–1946 (2017)

    Article  MathSciNet  Google Scholar 

  15. Wang, X., Su, H., Wang, X.: Robust semiglobal swarm tracking of coupled harmonic oscillators with input saturation and external disturbance. Int. J. Robust Nonlinear Control 28(5), 1566–1582 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Qian, J., Wang, X., Jiang, G.P.: Observer-based semi-global containment of saturated multi-agent systems with uncertainties. J. Franklin Inst. 358(15), 7740–7760 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yuan, R., Tan, X., Fan, G.: Robust adaptive neural network control for a class of uncertain nonlinear systems with actuator amplitude and rate saturations. Neurocomputing 125, 72–80 (2014)

    Article  Google Scholar 

  18. Ma, J., Zheng, Z., Li, P.: Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation. IEEE Trans. Cybern. 45(4), 728–741 (2014)

    Article  Google Scholar 

  19. Zhou, S., Chen, M., Ong, C.J.: Adaptive neural network control of uncertain MIMO nonlinear systems with input saturation. Neural Comput. Appl. 27(5), 1317–1325 (2016)

    Article  Google Scholar 

  20. Chen, Z., Li, Z., Chen, C.L.P.: Adaptive neural control of uncertain MIMO nonlinear systems with state and input constraints. IEEE Trans. Neural Netw. Learn. Syst. 28(6), 1318–1330 (2016)

    Article  Google Scholar 

  21. Zhu, G., Du, J., Li, J.: Robust adaptive NN tracking control for MIMO uncertain nonlinear systems with completely unknown control gains under input saturations. Neurocomputing 365, 125–136 (2019)

    Article  Google Scholar 

  22. Casadei, G., Astolfi, D., Alessandri, A.: Synchronization of interconnected linear systems via dynamic saturation redesign. IFAC-Papers OnLine 52(16), 622–627 (2019)

    Article  Google Scholar 

  23. Casadei, G., Astolfi, D., Alessandri, A.: Synchronization in networks of identical nonlinear systems via dynamic dead zones. IEEE Control Syst. Lett. 3(3), 667–672 (2019)

    Article  MathSciNet  Google Scholar 

  24. Wu, C.W., Chua, L.O.: Application of graph theory to the synchronization in an array of coupled nonlinear oscillators. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 42(8), 494–497 (1995)

    Article  Google Scholar 

  25. Bernstein, D.S.: Matrix Mathematics. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  26. Qu, Z.: Robust Control of Nonlinear Uncertain Systems. Wiley, Hoboken (1998). IEEE Transactions on Automatic Control

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Ping Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qian, J., Wang, X., Jiang, GP. (2023). Robust Coordinated Tracking of Saturated Multi-agent Systems: A Dynamic Input Saturation Reconstruction Approach. In: Yan, L., Duan, H., Deng, Y. (eds) Advances in Guidance, Navigation and Control. ICGNC 2022. Lecture Notes in Electrical Engineering, vol 845. Springer, Singapore. https://doi.org/10.1007/978-981-19-6613-2_246

Download citation

Publish with us

Policies and ethics