Skip to main content

Schrödinger Flow’s Dispersive Estimates in a regime of Re-scaled Potentials

  • Conference paper
  • First Online:
Qualitative Properties of Dispersive PDEs (INdAM 2021)

Part of the book series: Springer INdAM Series ((SINDAMS,volume 52))

Included in the following conference series:

  • 190 Accesses

Abstract

The problem of monitoring the (constants in the estimates that quantify the) dispersive behaviour of the flow generated by a Schrödinger operator is posed in terms of the scaling parameter that expresses the small size of the support of the potential, along the scaling limit towards a Hamiltonian of point interaction. At positive size, dispersive estimates are completely classical, but their dependence on the short range of the potential is not explicit, and the understanding of such a dependence would be crucial in connecting the dispersive behaviour of the short-range Schrödinger operator with the zero-range Hamiltonian. The general set-up of the problem is discussed, together with preliminary answers, open questions, and plausible conjectures, in a ‘propaganda’ spirit for this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adami, R., Boni, F., Carlone, R., Tentarelli, L.: Ground states for the planar NLSE with a point defect as minimizers of the constrained energy. Calc. Var. 61, 195 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albeverio, S., Brzeźniak, Z., Dabrowski, L.: Fundamental solution of the heat and Schrödinger equations with point interaction. J. Funct. Anal. 130, 220–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.Solvable Models in Quantum Mechanics, 2nd edn. AMS Chelsea Publishing, Providence (2005). With an appendix by Pavel Exner

    Google Scholar 

  4. Amrein, W.O.: Hilbert Space Methods in Quantum Mechanics. Fundamental Sciences. EPFL Press, Lausanne; distributed by CRC Press, Boca Raton, FL (2009)

    Google Scholar 

  5. Artbazar, G., Yajima, K.; The Lp-continuity of wave operators for one dimensional Schrödinger operators. J. Math. Sci. Univ. Tokyo 7, 221–240 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Beceanu, M.: Structure of wave operators for a scaling-critical class of potentials. Am. J. Math. 136, 255–308 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beceanu, M., Schlag, W.: Structure formulas for wave operators under a small scaling invariant condition. J. Spectr. Theory 9, 967–990 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beceanu, M., Schlag, W.: Structure formulas for wave operators. Am. J. Math. 142, 751–807 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cacciapuoti, C., Finco, D., Noja, D.: Well posedness of the nonlinear Schrödinger equation with isolated singularities. J. Differ. Equ. 305, 288–318 (2021)

    Article  MATH  Google Scholar 

  10. Cazenave, T.: Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics. New York University Courant Institute of Mathematical Sciences, New York (2003)

    Google Scholar 

  11. D’Ancona, P., Fanelli, L.: Lp-boundedness of the wave operator for the one dimensional Schrödinger operator. Commun. Math. Phys. 268, 415–438 (2006)

    Article  MATH  Google Scholar 

  12. D’Ancona, P., Pierfelice, V., Teta, A.: Dispersive estimate for the Schrödinger equation with point interactions. Math. Methods Appl. Sci. 29, 309–323 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dell’Antonio, G., Michelangeli, A., Scandone, R., Yajima, K.: Lp-boundedness of wave operators for the three-dimensional multi-centre point interaction. Ann. Henri Poincaré 19, 283–322 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erdoğan, M.B., Schlag, W.: Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three. I. Dyn. Partial Differ. Equ. 1, 359–379 (2004)

    Article  MATH  Google Scholar 

  15. Finco, D., Yajima, K.: The Lp boundedness of wave operators for Schrödinger operators with threshold singularities. II. Even dimensional case. J. Math. Sci. Univ. Tokyo 13, 277–346 (2006)

    MATH  Google Scholar 

  16. Fukaya, N., Georgiev, V., Ikeda, M.: On stability and instability of standing waves for 2d-nonlinear Schrödinger equations with point interaction (2021). arXiv:2109.04680

    Google Scholar 

  17. Georgiev, V., Giammetta, A.R.: Sectorial Hamiltonians without zero resonance in one dimension, in Recent Advances in Partial Differential Equations and Applications, vol. 666 of Contemp. Math., pp. 225–237. Amer. Math. Soc., Providence (2016)

    Google Scholar 

  18. Georgiev, V., Michelangeli, A., Scandone, R.: On fractional powers of singular perturbations of the Laplacian. J. Funct. Anal. 275, 1551–1602 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Georgiev, V., Michelangeli, A., Scandone, R.: Standing waves and global well-posedness for the 2d Hartree equation with a point interaction (2022). arXiv.org:2204.05053

    Google Scholar 

  20. Goldberg, M.: Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials. Geom. Funct. Anal. 16, 517–536 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Iandoli, F., Scandone, R.: Dispersive estimates for Schrödinger operators with point interactions in \(\mathbb {R}^3\). In: Michelangeli, A., Dell’Antonio, G. (eds.), Advances in Quantum Mechanics: Contemporary Trends and Open Problems. Springer INdAM Series, vol. 18, pp. 187–199. Springer, Berlin

    Google Scholar 

  22. Jensen, A., Kato, T.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46, 583–611 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jensen, A., Yajima, K.: A remark on Lp-boundedness of wave operators for two-dimensional Schrödinger operators. Commun. Math. Phys. 225, 633–637 (2002)

    Article  MATH  Google Scholar 

  24. Jensen, A., Yajima, K.: On Lp boundedness of wave operators for 4-dimensional Schrödinger operators with threshold singularities. Proc. Lond. Math. Soc. (3) 96, 136–162 (2008)

    Google Scholar 

  25. Journé, J.-L., Soffer, A., Sogge, C.D.: Decay estimates for Schrödinger operators. Commun. Pure Appl. Math. 44, 573–604 (1991)

    Article  MATH  Google Scholar 

  26. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Universitext, 2nd edn. Springer, New York (2015)

    Google Scholar 

  27. Michelangeli, A., Olgiati, A., Scandone, R.: Singular Hartree equation in fractional perturbed Sobolev spaces. J. Nonlinear Math. Phys. 25, 558–588 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Michelangeli, A., Ottolini, A.: On point interactions realised as Ter-Martirosyan-Skornyakov Hamiltonians. Rep. Math. Phys. 79, 215–260 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rauch, J.: Local decay of scattering solutions to Schrödinger’s equation. Commun. Math. Phys. 61, 149–168 (1978)

    Article  MATH  Google Scholar 

  30. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 1. Academic Press, New York (1972)

    MATH  Google Scholar 

  31. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London (1975)

    Google Scholar 

  32. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. III. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London (1979). Scattering theory

    Google Scholar 

  33. Rodnianski, I., Schlag, W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155, 451–513 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Scarlatti, S., Teta, A.: Derivation of the time-dependent propagator for the three-dimensional Schrödinger equation with one-point interaction. J. Phys. A 23, L1033–L1035 (1990)

    Article  MATH  Google Scholar 

  35. Schlag, W.: Dispersive estimates for Schrödinger operators: a survey. In: Mathematical Aspects of Nonlinear Dispersive Equations, vol. 163 of Ann. of Math. Stud., pp. 255–285. Princeton Univ. Press, Princeton (2007)

    Google Scholar 

  36. Sulem, C., Sulem, P.-L.: The nonlinear Schrödinger equation, vol. 139 of Applied Mathematical Sciences. Springer, New York (1999). Self-focusing and wave collapse

    Google Scholar 

  37. Tao, T.: Nonlinear dispersive equations, vol. 106 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (2006). Local and global analysis

    Google Scholar 

  38. Weder, R.: Lp-\(L^{\dot p}\) estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential. J. Funct. Anal. 170, 37–68 (2000)

    Google Scholar 

  39. Yajima, K.: The Wk, p-continuity of wave operators for Schrödinger operators. J. Math. Soc. Jpn. 47, 551–581 (1995)

    Article  MATH  Google Scholar 

  40. Yajima, K.: Lp-boundedness of wave operators for two-dimensional Schrödinger operators. Commun. Math. Phys. 208, 125–152 (1999)

    Article  MATH  Google Scholar 

  41. Yajima, K.: Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue. Commun. Math. Phys. 259, 475–509 (2005)

    Article  MATH  Google Scholar 

  42. Yajima, K.: Remarks on Lp-boundedness of wave operators for Schrödinger operators with threshold singularities. Doc. Math. 21, 391–443 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Yajima, K.: On wave operators for Schrödinger operators with threshold singularities in three dimensions (2016). arXiv:1606.03575

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Italian National Institute for Higher Mathematics—INdAM (V.G., A.M., R.S.), the project ‘Problemi stazionari e di evoluzione nelle equazioni di campo non-lineari dispersive’ of GNAMPA—Gruppo Nazionale per l’Analisi Matematica (V.G.), the PRIN project no. 2020XB3EFL of the MIUR—Italian Ministry of University and Research (V.G.), the Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences (V.G.), the Top Global University Project at Waseda University (V.G.), and the Alexander von Humboldt Foundation, Bonn (A.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Scandone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Georgiev, V., Michelangeli, A., Scandone, R. (2022). Schrödinger Flow’s Dispersive Estimates in a regime of Re-scaled Potentials. In: Georgiev, V., Michelangeli, A., Scandone, R. (eds) Qualitative Properties of Dispersive PDEs. INdAM 2021. Springer INdAM Series, vol 52. Springer, Singapore. https://doi.org/10.1007/978-981-19-6434-3_5

Download citation

Publish with us

Policies and ethics