Skip to main content

Semi-local Nuclear Forces from Chiral EFT: State-of-the-Art and Challenges

  • Reference work entry
  • First Online:
Handbook of Nuclear Physics

Abstract

Recently, a new generation of nuclear forces has been developed in the framework of chiral EFT. An important feature of these potentials is a novel semi-local regularization approach that combines the advantages of a local regulator for long-range interactions with the convenience of an angle-independent nonlocal regulator for contact interactions. The authors discuss the key features of the semi-local two-nucleon potentials and demonstrate their outstanding performance in the two-nucleon sector by showing selected results up to the fifth order in the EFT expansion. Also reviewed are applications to heavier systems, which are currently limited to the third chiral order. This limitation reflects the conceptual difficulty in constructing consistently regularized many-body forces and current operators and affects all currently available interactions. The authors outline possible ways to tackle this problem and discuss future directions in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • W.P. Abfalterer et al., Phys. Rev. Lett. 81, 57–60 (1998)

    ADS  Google Scholar 

  • S. Aoki, K. Kikuchi, T. Onogi, JHEP 04, 156 (2015)

    ADS  Google Scholar 

  • O. Bär, M. Golterman, Phys. Rev. D 89(3), 034505 (2014) [erratum: Phys. Rev. D 89(9), 099905 (2014)]

    Google Scholar 

  • V. Bernard, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 77, 064004 (2008)

    ADS  Google Scholar 

  • V. Bernard, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 84, 054001 (2011)

    ADS  Google Scholar 

  • S. Binder et al. [LENPIC], Phys. Rev. C 93(4), 044002 (2016)

    Google Scholar 

  • S. Binder et al. [LENPIC], Phys. Rev. C 98(1), 014002 (2018)

    Google Scholar 

  • L. Bird, P. Christmas, A. Taylor, E. Wood, Nucl. Phys. 27, 586 (1961)

    Google Scholar 

  • B. Borasoy, R. Lewis, P.P.A. Ouimet, Nucl. Phys. B Proc. Suppl. 128, 141–147 (2004)

    ADS  Google Scholar 

  • G.F. Cox et al., Nucl. Phys. B 4, 353–373 (1968)

    ADS  Google Scholar 

  • J.J. de Swart, C.P.F. Terheggen, V.G.J. Stoks, 3rd International Symposium on Dubna Deuteron 95 (1995)

    Google Scholar 

  • A. Ekström et al., Phys. Rev. C 91(5), 051301 (2015)

    ADS  Google Scholar 

  • D.R. Entem, R. Machleidt, Y. Nosyk, Phys. Rev. C 96(2), 024004 (2017)

    ADS  Google Scholar 

  • E. Epelbaum, Phys. Lett. B 639, 456–461 (2006)

    ADS  Google Scholar 

  • E. Epelbaum, Eur. Phys. J. A 34, 197–214 (2007)

    ADS  Google Scholar 

  • E. Epelbaum, PoS CD2018, 006 (2019)

    Google Scholar 

  • E. Epelbaum, J. Gegelia, Eur. Phys. J. A 41, 341–354 (2009)

    ADS  Google Scholar 

  • E. Epelbaum et al., Phys. Rev. Lett. 129 (1), 012001. (2022)

    Google Scholar 

  • E. Epelbaum, H. Krebs, U.-G. Meißner, Eur. Phys. J. A 51(5), 53 (2015a)

    ADS  Google Scholar 

  • E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. Lett. 115(12), 122301 (2015b)

    ADS  Google Scholar 

  • E. Epelbaum, A.M. Gasparyan, J. Gegelia, U.-G. Meißner, Eur. Phys. J. A 54, 186 (2018)

    ADS  Google Scholar 

  • E. Epelbaum et al. [LENPIC], Phys. Rev. C 99(2), 024313 (2019)

    Google Scholar 

  • E. Epelbaum, H. Krebs, P. Reinert, Front. Phys. 8, 98 (2020)

    Google Scholar 

  • E. Epelbaum et al., Eur. Phys. J. A 56(3), 92 (2020)

    ADS  Google Scholar 

  • A.A. Filin et al., Phys. Rev. Lett. 124(8), 082501 (2020)

    ADS  Google Scholar 

  • A.A. Filin et al., Phys. Rev. C 103(2), 024313 (2021)

    ADS  Google Scholar 

  • R.J. Furnstahl et al., Phys. Rev. C 92(2), 024005 (2015)

    ADS  Google Scholar 

  • A. M. Gasparyan, E. Epelbaum, Phys. Rev. C 105(2), 024001 (2022)

    ADS  Google Scholar 

  • A. Gezerlis et al., Phys. Rev. Lett. 111(3), 032501 (2013)

    ADS  Google Scholar 

  • L. Girlanda, A. Kievsky, M. Viviani, Phys. Rev. C 84(1), 014001 (2011) [erratum: Phys. Rev. C 102(1), 019903 (2020)]

    Google Scholar 

  • L. Girlanda, A. Kievsky, L.E. Marcucci, M. Viviani, Phys. Rev. C 102, 064003 (2020)

    ADS  Google Scholar 

  • W. Glöckle, H. Witała, D. Hüber, H. Kamada, J. Golak, Phys. Rep. 274, 107–285 (1996)

    ADS  Google Scholar 

  • D.M. Grabowska, D.B. Kaplan, Phys. Rev. Lett. 116(21), 211602 (2016)

    ADS  Google Scholar 

  • F. Gross, A. Stadler, Phys. Rev. C 78, 014005 (2008)

    ADS  Google Scholar 

  • K. Hebeler et al., Phys. Rev. C 91(4), 044001 (2015)

    ADS  Google Scholar 

  • M. Hoferichter et al., Phys. Rev. Lett. 115(19), 192301 (2015)

    ADS  Google Scholar 

  • O.N. Jarvis, C. Whitehead, M. Shah, Phys. Lett. B 36(4), 409–411 (1971)

    ADS  Google Scholar 

  • U.D. Jentschura et al., Phys. Rev. A 83, 042505 (2011)

    ADS  Google Scholar 

  • N. Kaiser, R. Brockmann, W. Weise, Nucl. Phys. A 625, 758–788 (1997)

    ADS  Google Scholar 

  • D.B. Kaplan, D.M. Grabowska, PoS LATTICE2016, 018 (2016)

    Google Scholar 

  • E.G. Kessler Jr., Phys. Lett. A 255, 221 (1999)

    ADS  Google Scholar 

  • H. Krebs, Eur. Phys. J. A 56(9), 234 (2020)

    ADS  Google Scholar 

  • H. Krebs, A. Gasparyan, E. Epelbaum, Phys. Rev. C 85, 054006 (2012)

    ADS  Google Scholar 

  • H. Krebs, A. Gasparyan, E. Epelbaum, Phys. Rev. C 87(5), 054007 (2013)

    ADS  Google Scholar 

  • T.A. Lähde, U.-G. Meißner, Lect. Notes Phys. 957, 1–396 (2019)

    Google Scholar 

  • D. Lee, Front. Phys. 8, 174 (2020)

    Google Scholar 

  • P.W. Lisowski et al., Phys. Rev. Lett. 49, 255–259 (1982)

    ADS  Google Scholar 

  • M. Lüscher, JHEP 08, 071 (2010) [erratum: JHEP 03, 092 (2014)]

    Google Scholar 

  • R. Machleidt, Phys. Rev. C 63, 024001 (2001)

    ADS  Google Scholar 

  • P. Maris et al., Phys. Rev. C 103(5), 054001 (2021)

    ADS  Google Scholar 

  • R. Navarro Pérez, J.E. Amaro, E. Ruiz Arriola, Phys. Rev. C 95(6), 064001 (2017)

    ADS  Google Scholar 

  • R. Navarro Pérez, J.E. Amaro, E. Ruiz Arriola, Phys. Rev. C 88(6), 064002 (2013) [erratum: Phys. Rev. C 91(2), 029901 (2015)]

    Google Scholar 

  • R. Navarro Pérez, J.E. Amaro, E. Ruiz Arriola, Phys. Rev. C 88, 024002 (2013) [erratum: Phys. Rev. C 88(6), 069902 (2013)]

    Google Scholar 

  • M. Puchalski, J. Komasa, K. Pachucki, Phys. Rev. Lett. 125(25), 253001 (2020)

    ADS  Google Scholar 

  • P. Reinert, H. Krebs, E. Epelbaum, Eur. Phys. J. A 54(5), 86 (2018)

    ADS  Google Scholar 

  • P. Reinert, H. Krebs, E. Epelbaum, Phys. Rev. Lett. 126(9), 092501 (2021)

    ADS  Google Scholar 

  • P. Reinert, PhD thesis, Ruhr-Universität Bochum, to be published (2022)

    Google Scholar 

  • N.L. Rodning, L.D. Knutson, Phys. Rev. C 41, 898–909 (1990)

    ADS  Google Scholar 

  • K. Schoen et al., Phys. Rev. C 67, 044005 (2003)

    ADS  Google Scholar 

  • K. Sekiguchi et al., Phys. Rev. C 65, 034003 (2002)

    ADS  Google Scholar 

  • A.A. Slavnov, Nucl. Phys. B 31, 301–315 (1971)

    ADS  Google Scholar 

  • V.G.J. Stoks et al., Phys. Rev. C 48, 792–815 (1993)

    ADS  Google Scholar 

  • V.G.J. Stoks et al., Phys. Rev. C 49, 2950–2962 (1994)

    ADS  Google Scholar 

  • A.E. Taylor, E. Wood, L. Bird, Nucl. Phys. 16(2), 320–330 (1960)

    Google Scholar 

  • C. Van Der Leun, C. Alderliesten, Nucl. Phys. A 380, 261–269 (1982)

    ADS  Google Scholar 

  • S. Weinberg, Nucl. Phys. B 363, 3–18 (1991)

    ADS  Google Scholar 

  • S. Wesolowski et al., Phys. Rev. C 104(6), 064001 (2021)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Vadim Baru, Arseniy Filin, Ashot Gasparyan, Jambul Gegelia, Christopher Körber, Ulf Meißner, and to all members of the LENPIC Collaboration for sharing their insights into the topics addressed in this chapter. This work was supported by BMBF (contract No. 05P18PCFP1), by DFG and NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 11621131001, DFG Project-ID 196253076 – TRR 110), by ERC AdG NuclearTheory (grant No. 885150), and by the EU Horizon 2020 research and innovation program (STRONG-2020, grant agreement No. 824093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Epelbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Epelbaum, E., Krebs, H., Reinert, P. (2023). Semi-local Nuclear Forces from Chiral EFT: State-of-the-Art and Challenges. In: Tanihata, I., Toki, H., Kajino, T. (eds) Handbook of Nuclear Physics . Springer, Singapore. https://doi.org/10.1007/978-981-19-6345-2_54

Download citation

Publish with us

Policies and ethics