Skip to main content

Natural Fiber of Palm Empty Fruit Bunches (PEFB) Reinforced Epoxy Resin as Polymer Composites

  • Chapter
  • First Online:
Structural Integrity and Monitoring for Composite Materials

Abstract

In Malaysia, an abundance of PEFB of biomass waste with the amount of 23 million tonnes is produced annually in landfills. Malaysia’s oil palm sector has grown rapidly because of abundant oil palm biomass and cheap labor cost can be beneficial for bio-product production, thus promoting a green environment. The potential of PEFB as natural fiber for reinforcing materials into LDPE plastic waste to produce a deck panel has sustainable and environmentally friendly properties. The research presents the utilization of deck panels made from Palm Empty Fruit Bunches (PEFB) fiber mixed with Low-Density Polyethylene (LDPE) plastic waste to produce PEFB-LDPE polymer composites. The main objective of this study is to determine the optimum ratio of PEFB fiber mixed LDPE plastic waste to produce PEFB-LDPE polymer composites for deck panel application. To produce PEFB-LDPE polymer composites, the main objective is to determine the optimum ratio of PEFB fibers and LDPE plastic waste into polyurethane resin and hardeners. The preparation of the samples involved the process of grinding PEFB fibers into small particles sizes ranging from 1.30 to 1.50 mm. In the process of mixing at different ratios of PEFB fibers by weight of 0.0, 0.1, 0.2 0.3,0.4, 0.5, and 0.6 (wt/wt) mixed with a constant ratio of 0.2 LDPE plastic waste, the polyurethane resin binder and hardener resin (3:1). The samples of PEFB-LDPE polymer composites will be transferred to 200 mm × 200 mm aluminum by using the close-mold method at room temperature (24 ± 2 °C) for 24 h for the curing process. For tensile results, the ratio PEFB/epoxy resin of 0.3 produces higher tensile strength at 18.18 MPa with stress–strain at 3.28%. Similar to flexural results, the ratio of 0.3 PEFB/epoxy resin at 26.20 MPa. In terms of impact strength, 0.3 PEFB/epoxy resin shows the highest impact at 159.89 J/m with energy absorption at 10.10 kJ/m2. It is also supported by compression strength, 0.3 PEFB/epoxy resin reveals a high value at 12.59 MPa. In conclusion, the ratio of 0.3 PEFB/epoxy resin is the optimum composition to be applied to polymer composite applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li M, Pu Y, Thomas VM, Yoo CG, Ozcan S, Deng Y, Nelson K, Ragauskas AJ (2020) Recent advancements in plants-based natural fiber-reinforced composites and their applications. Compos B Eng 200(1):1–46

    Google Scholar 

  2. Karimah A, Ridho MT, Munawar SS, Adi DS, Ismadi, Damayanti R, Subiyanti B, Fatriasari W, Fudholi A (2021) A review on natural fibers for development of eco-friendly bio-composite: characteristic, and utilizations. J Mater Res Technol 13:2442–2458

    Google Scholar 

  3. Yong ZJ, Bashir MJK, Ng CA, Sethupathi S, Lim JW, Show PL (2019) Sustainable waste-to-energy development in Malaysia: appraisal of environmental, financial, and public issues related to energy recovery from municipal solid waste. Processes 7(10):676–682

    Article  CAS  Google Scholar 

  4. Ayilara MS, Olanrewaju OS, Babalola OO, Odeyemi O (2020) Waste management through composting: challenges and potentials. Sustainability 12:1–23

    Article  Google Scholar 

  5. Padzil FNM, Lee SH, Ainun ZMA, Lee CH, Abdullah LC (2020) The potential of oil palm empty fruit bunches resources in nanocellulose hydrogel production for versatile application: a review. Materials 13(5):1245–1258

    Article  CAS  Google Scholar 

  6. Ugochukwu S, Ridzuan MJM, Abdul Majid MS, Cheng EM, Ahmad Firdaus AZ, Marsi N (2020) Influence of distilled water and alkaline solution on the scratch resistance properties of Napier fiber filler epoxy (NFFE) composites. J Market Res 9(6):14412–14424

    CAS  Google Scholar 

  7. Evode N, Qamar SA, Bilal M, Barcelo D, Iqbal HMN (2021) Plastic waste and its management strategies for environmental sustainability. Case Stud Chem Environ Eng 4:1–8

    Google Scholar 

  8. Ncube LK, Ude AU, Ogunmuyiwa EN, Zulkifli R, Beas IN (2021) An overview of plastic waste generation and management in food packaging industries. Recycling 6(12):1–25

    Google Scholar 

  9. Yashas Gowda TG, Sanjay MR, Subrahmanya Bhat K, Madhu P, Senthamaraikannan P, Yogesha B (2018) Polymer matrix-natural fiber composites: an overview. Cogent Eng 5(1):1–13

    Article  Google Scholar 

  10. Post W, Susa A, Blaauw R, Molenveld K, Knoop RJI (2020) A review of the potential and limitations of recyclable thermosets for structural applications. Polym Rev 60(2):359–388

    Article  CAS  Google Scholar 

  11. Thiounn T, Smith RC (2020) Advances and approaches for chemical recycling of plastic waste. Polym Sci 58(10):1347–1364

    Article  CAS  Google Scholar 

  12. Kanhar AH, Chen S, Wang F (2020) Incineration fly ash and its treatment to possible utilization: a review. Energy 13(6681):1–35

    Google Scholar 

  13. Chen HL, Nath TK, Chong S, Foo V, Gibbins C, Lechner AM (2021) The plastic waste problem in Malaysia: management, recycling, and disposal of local and global plastic waste. SN Appl Sci 3(437):1–15

    Google Scholar 

  14. Gaffey J, McMahon H, Marsh E, Vehmas K, Kymalainen T, Vos J (2021) Understanding consumer perspectives of bio-based products—a comparative case study from Ireland and the Netherlands. Sustainability 13(6062):1–19

    Google Scholar 

  15. Kaniapan S, Hassan S, Hamdan Y, Nesan KP, Azeem M (2021) The utilization of palm oil and oil palm residues and the related challenges as a suitable alternative in biofuel, bioenergy, and transportation sector: a review. Sustainability 13(3110):1–25

    Google Scholar 

  16. Cheau CY, Wendy PQN, Mei FC, Supramaniam CV, Chan YC, Kheang Loh S, Chin Soh A, Denny KSN (2018) Challenges and potential of palm-based biomass and palm oil mill effluent for the production of sustainable power and value-added products. In: Impacts and challenges in oil palm cultivation and downstream applications of biomass. Nova Science Publishers, pp 169–206 (Chapter 6)

    Google Scholar 

  17. Abdel-Shafy HI, Mansour MSM (2018) Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt J Pet 27(4):1275–1290

    Article  Google Scholar 

  18. Mahmod SS, Azahar AM, Luthfi AAI, Abdul PM, Mastar MS, Anuar N, Takriff MS, Jahim JMD (2020) Potential utilization of dark-fermented palm oil mill effluent in continuous production of biomethane by self-granulated mixed culture. Sci Rep 10(9167):1–12

    Google Scholar 

  19. Rahardja IB, Daraquthni Z, Ramadhan AI (2019) Potential of palm oil solid waste as steam power fuel (case study at XYZ palm oil mill). J Appl Sci Adv Technol 2(2):33–38

    Google Scholar 

  20. Olah J, Aburumman N, Popp J, Khan MA, Haddad H, Kitukutha N (2020) Impact of industry 4.0 on environmental sustainability. Sustainability 12(4674):1–21

    Google Scholar 

  21. Azman MA, Asyraf MRM, Khalina A, Petry M, Ruzaidi CM, Sapuan SM, Wan Nik WB, Ishak MR, Ilyas RA, Suriani MJ (2021) Natural fiber-reinforced composite material for product design: a short review. Polymers 13(1917):1–24

    Google Scholar 

  22. Hanafiah KM, Abd Mutalib AH, Miard P, Sheng Goh C, Mohd Sah SA, Ruppert N (2021) Impact of Malaysian palm oil on sustainable development goals: co-benefits and trade-offs across mitigation strategies. In: Sustainability science. Springer, pp 1–23

    Google Scholar 

  23. Mahlia TMI, Ismail N, Hossain N, Silitonga AS, Shamsuddin AH (2019) Palm oil and its wastes as bioenergy sources: a comprehensive review. Environ Sci Pollut Res 26:14849–14866

    Article  CAS  Google Scholar 

  24. Murphy DJ, Goggin K, Paterson RRM (2021) Oil palm in the 2020s and beyond: challenges and solutions. CABI Agric Biosci 2(39):1–22

    Google Scholar 

  25. Shrivastava P, Khingphakdi P, Palamanit A, Kumar A, Tekasakul P (2021) Investigation of physicochemical properties of oil palm biomass for evaluating the potential of biofuels production via pyrolysis processes. Biomass Convers Biorefin 5:1–20

    Google Scholar 

  26. Smagulova GT, Vassilyeva N, Kaidar BB, Yesbolov N, Prkhod’ko NG, Zupiyeva Z, Artykbaeva MT, Mansurov A (2021) Recycling of low-density polyethylene waste for the synthesis of carbon nanotubes. J Eng Phys Thermophys 94:431–436

    Google Scholar 

  27. Ibrahim NR, Noordin NNM (2020) Understanding the issue of plastic waste pollution in Malaysia: a case for human security. J Media Inf Warfare 12(1):105–140

    Google Scholar 

  28. Sharma HB, Vanapalli KR, Cheela VRS, Ranjan VP, Jaglan AK, Dubey B, Goel S, Bhattacharya J (2020) Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resour Conserv Recycl 162:1–12

    Article  Google Scholar 

  29. Filiciotto L, Rothenberg G (2020) Biodegradable plastics: standards, policies, and impacts. ChemSusChem 14(1):56–72

    Google Scholar 

  30. Verma R, Vinoda KS, Papireddy M, Gowda ANS (2016) Toxic pollutants from plastic waste—a review. Proc Environ Sci 35:701–708

    Article  CAS  Google Scholar 

  31. Schmaltz E, Melvin EC, Diana Z, Gunady E, Rittschof D, Somarelli JA, Virdin J, Dunphy-Daly MM (2020) Plastic pollution solutions: emerging technologies to prevent and collect marine plastic pollution. Environ Int 144:1–17

    Article  Google Scholar 

  32. Turku I, Karki T, Rinne K, Puurtinen A (2017) Characterization of plastic blends made from mixed plastics waste from different sources. Waste Manag Res J Sustain Circ Econ SAGE J 1:1–12

    Google Scholar 

  33. Mohammed L, Ansari MNM, Puan G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Natural fiber reinforced polymer composites. Int J Polym Sci 2015:1–8

    Article  Google Scholar 

  34. Kumar R, Verma A, Shome A, Sinha R, Sinha S, Jha PK, Kumar R, Kumar P, Shubham, Das S, Sharma P, Prasad PVV (2021) Impacts of plastic pollution on ecosystem services, sustainable development goals, and the need to focus on circular economy and policy interventions. Sustainability 13(17):1–24

    Google Scholar 

  35. Turner RP, Kelly CA, Fox R, Hopkins B (2018) Re-formative polymer composites from plastic waste: Novel infrastructural product application. Recycling 3(54):1–16

    CAS  Google Scholar 

  36. Bernatas R, Dagreou S, Despax-Ferreres A, Barasinski A (2021) Recycling of fiber-reinforced composites with a focus on thermoplastic composites. Clean Eng Technol 5:1–14

    Google Scholar 

  37. Rajak DK, Pagar DD, Menezes PL, Linul E (2019) Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers 11(1667):1–37

    Google Scholar 

  38. Panda A, Dyadyura K, Valicek J, Harnicarova M, Zajac J, Modrak V, Pandova I, Vrabel P, Novakova-Marcincinova E, Pavelek Z (2017) Manufacturing technology of composite materials—principles of modification of polymer composite materials technology based on polytetrafluoroethylene. Materials 10(377):1–20

    CAS  Google Scholar 

  39. Kumarasamy S, Zainol Abidin MS, Abu Bakar MN, Nazida MS, Mustafa Z, Anjang A (2017) Effects of high and low temperature on the tensile strength of glass fiber reinforced polymer composites. IOP Conf Ser Mater Sci Eng 370:1–10

    Google Scholar 

  40. Shen J, Liang J, Xinfeng L, Hingjian L, Jing Y, Yang Z (2020) Recent progress in polymer-based building materials. Int J Polym Sci 1–8

    Google Scholar 

  41. Pitroda J, Bhut KA, Bhimani A, Chhayani SN, Bhatu UR, Chauhan ND (2016) A critical review of the non-loading bearing wall based on different materials. Int J Constr Res Civ Eng 2(4):33–40

    Google Scholar 

  42. Saleem MA, Zafar MN, Saleem MM, Xia J (2021) Recent developments in the prefabricated bridge deck systems. Case Stud Constr Mater 15:1–14

    Google Scholar 

  43. Vecchio CD, Lludovico M, Prota A (2021) Cost and effectiveness of fiber-reinforced polymer solutions for the large-scale mitigation of seismic risk in reinforced concrete buildings. Polymers 13(17):2962–2978

    Article  Google Scholar 

  44. Naidu L, Moorthy R (2021) A review of key sustainability issues in the Malaysian palm oil industry. Sustainability 13:1–13

    Article  Google Scholar 

  45. Owuna FJ (2020) Stability of vegetable-based oils used in the formulation of eco-friendly lubricants—a review. Egypt J Pet 29(3):251–256

    Article  Google Scholar 

  46. Jafri NHS, Jimat DN, Azmin NFM, Sulaiman S, Nor YA (2021) The potential of biomass waste in Malaysian palm oil industry: a case study of Boustead Plantation Berhad. IOP Conf Ser Mater Sci Eng 1192:1–12

    Article  Google Scholar 

  47. Sundalian M, Larissa D, Suprijana O (2021) Contents and utilization of palm oil fruit waste. Biointerface Res Appl Chem 11(3):10148–10160

    CAS  Google Scholar 

  48. Kamyab H, Chelliapan S, Md Din MF, Rezania S, Khademi T, Kumar A (2018) Palm oil mill effluent as an environmental pollutant. IntechOpen, pp 1–15

    Google Scholar 

  49. Pimenidou P, Dupont V (2012) Characterization of palm empty fruit bunch (PEFB) and pinewood bio-oils and kinetics of their thermal degradation. Bioresour Technol 109:198–205

    Article  CAS  Google Scholar 

  50. Ng KI, Sipaut CS, Janaun JA (2020) Oil extraction from oil palm empty fruit bunches with crystallization technique. Sains Malays 49(8):2005–2011

    Article  CAS  Google Scholar 

  51. Awalludin MF, Sulaiman O, Hashim R, Wan Nadhari WNA (2015) An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renew Sustain Energy Rev 50:1469–1484

    Article  CAS  Google Scholar 

  52. Kate AT, Kuepper AB, Piotrowski PK, Wiggs C, Rijk AG, Profundo (2021) Oil palm expansion in Peninsular Malaysia is guided by non-transparency. Chain React Res 1–14

    Google Scholar 

  53. Otti VI, Ifeanyichukwu HI, Nwaorum FC, Ogbuagu FU (2014) Sustainable oil palm waste management in engineering development. Civ Environ Res 6(5):121–126

    Google Scholar 

  54. Tang KHD, Qahtani HMS (2020) Sustainability of oil palm plantations in Malaysia. Environ Dev Sustain 22:4999–5023

    Article  Google Scholar 

  55. Ugochukwi S, Ridzuan MJM, Abdul Majis MS, Cheng EM, Razlan ZM, Marsi N (2021) Effect of thermal aging on the scratch resistance of natural-fiber-reinforced epoxy composites. Compos Struct 261:1–24

    Google Scholar 

  56. Trisakti B, Mhardela P, Husaini T, Irvan, Daimon H (2018) Production of oil palm empty fruit bunch compost for ornamental plant cultivation. IOP Conf Ser Mater Sci Eng 309:1–12

    Google Scholar 

  57. Fodzi MHM, Marsi N, Shariff HH (2020) Analysis of epoxy composite with diapers waste as fillers: relationship of density, porosity, and sound absorption coefficient. Int J Adv Res Eng Technol 11(4):137–146

    Google Scholar 

  58. Marsi N, Huzaisham NA, Rus AZM, Letchumanan T, Mahmood S, Masrol SR, Rashid AHA, Fodzi MHM, Thanasingam RAP (2020) The mechanical performance of tile is based on plastic waste (PW) mixed wood waste (MWW). J Comput Theor Nanosci 17(1):795–802

    Article  CAS  Google Scholar 

  59. Majumdar D, Srivastava A (2012) Volatile organic compound emissions from municipal solid waste disposal sites: a case study of Mumbai, India. J Air Waste Manag Assoc 62(4):398–407

    Article  CAS  Google Scholar 

  60. Conte M, Cagnazzo V, Donateo A, Cesari D, Grasso FM, Contini D (2018) A case study of municipal solid waste landfills’ impact on air pollution in south areas of Italy. Open Atmos Sci J 12:1–13

    CAS  Google Scholar 

  61. Chen DMC, Bodirsky BL, Krueger T, Mishra A, Popp A (2020) The world’s growing municipal solid waste: trends and impacts. Environ Res Lett 15(7):1–20

    Article  Google Scholar 

  62. Rahman MS, Alam J (2020) Solid waste management and incineration practice: a study of Bangladesh. Int J Nonferrous Metall 9(1):1–14

    Article  CAS  Google Scholar 

  63. Rahman NIA, Khoiry MA, Rahim S, Basri NEA (2020) Review on current municipal solid waste management in Malaysia. Int J Dis Recov Bus Cont 11(1):1–10

    Google Scholar 

  64. Tun MM, Juchelkowa D (2019) Drying methods for municipal solid waste quality improvement in the developed and developing countries: a review. Environ Eng Res 24(4):529–542

    Article  Google Scholar 

  65. Ulewicz M (2021) Recycled materials for concrete and other composites. Materials 14(9):1–3

    Article  Google Scholar 

  66. Laws of Malaysia (2007) Solid waste and public cleaning management act 672. Percetakan Nasional Malaysia Berhad, pp 1–81

    Google Scholar 

  67. Sreenivasan J, Govinda M, Chinnasami M, Kadiresu I (2012) Solid waste management in Malaysia—a move towards sustainability. IntechOpen, pp 1–16

    Google Scholar 

  68. Ozcan HK, Guvenc SY, Guvenc L, Demir G (2016) Municipal solid waste characterization according to different income levels: a case study. Sustainability 1–11

    Google Scholar 

  69. Sharma KD, Jain S (2020) Municipal solid waste generation, composition, and management: the global scenario. Soc Responsib J 16(6):917–948

    Article  Google Scholar 

  70. Naidu AL, Jagadeesh V, Bahubalendruni MVAR (2017) A review on chemical and physical properties of natural fiber-reinforced composites. Int J Adv Res Eng Technol 8(1):56–68

    Google Scholar 

  71. Sharma AK, Bhandari R, Aherwar A, Rimasauskiene R (2020) Matrix materials used in composites: a comprehensive study. Mater Todays Proc 21(3):1559–1562

    Google Scholar 

  72. Dharmaratne PD, Galabada H, Jayasinghe R, Nilmini R, Halwatura R (2021) Characterization of physical, chemical, and mechanical properties of Sri Lankan coir fibers. J Ecol Eng 22(6):55–65

    Article  Google Scholar 

  73. Chandra S, Uniyal D, Gill FS (2018) Polymer composites in the present scenario. J Graph Era Univ 6(2):246–262

    Google Scholar 

  74. Oladele IO, Omotosho TF, Adediran AA (2020) Polymer-based composites: an indispensable material for present and future applications. Int J Polym Sci 1–8

    Google Scholar 

  75. Ibrahim ID, Jamiru T, Sadiku RE, Kupolati WK, Agwuncha SC, Ekundayo G (2015) The use of polypropylene in bamboo fiber composites and their mechanical properties—a review. J Reinf Plast Compos 34(16):1347–1356

    Article  CAS  Google Scholar 

  76. Bogiatzidis C, Zoumpoulakis L (2021) Thermoset polymer matrix composites of epoxy, unsaturated polyester and novolac resin embedding construction and demolition waste powder: a comparative study. Polymers 13(737):1–13

    Google Scholar 

  77. Dadkhah M, Mosallanejad MH, Luliano L, Saboori A (2021) A comprehensive overview of the latest progress in the additive manufacturing of metal matrix composites: potential, challenges, and feasible solutions. Acta Metal Sin (Engl Lett) 34:1173–1200

    Google Scholar 

  78. Toozandehjani M, Kamarudin N, Dashtizadeh Z, Yee Lim E, Gomes A, Gomes C (2018) Conventional and advanced composites in aerospace technologies revisited. Am J Aerosp Eng 5(1):9–15

    Article  Google Scholar 

  79. Ravichandran M, Balasubramaniam M, Chairman CA, Pritima D, Dhinakaran V, Stalin B (2020) Recent developments in polymer matrix composites—a review. IOP Conf Ser Mater Sci Eng 988:1–9

    Google Scholar 

  80. Mohanavel V, Jacob MS, Raaj MN, Benjamin TM (2020) Mechanical properties of polymer matrix composites prepared through hand lay-up route. Int J Adv Sci Technol 29(9s):6586–6591

    Google Scholar 

  81. Alshaafi MM (2017) Factors affecting polymerization of resin-based composites: a literature review. Saudi Dental J 29(2):48–58

    Article  Google Scholar 

  82. Sucu T, Shaver MP (2020) Inherently degradable cross-linked polyesters and polycarbonates: resin to be cheerful. Polym Chem 11:6397–6412

    Article  CAS  Google Scholar 

  83. Lotfi A, Li H, Viet Doa D, Prusty G (2019) Natural fiber-reinforced composites: a review on material, manufacturing, and machinability. J Thermoplast Compos Mater 34(3):1–10

    Google Scholar 

  84. Jariwala H, Jain P (2019) A review on the mechanical behavior of natural fiber reinforced polymer composites and their applications. J Reinf Plast Compos 1–8

    Google Scholar 

  85. Sinha AK, Narang HK, Bhattacharya S (2017) Mechanical properties of natural fiber polymer composites. J Polym Eng 37(9):879–895

    Article  CAS  Google Scholar 

  86. Shahani S, Gao Z, Qaisrani MA, Ahmed N, Yaqoob H, Khoshnaw F, Sher F (2021) Preparation and characterization of sustainable wood polymer composites extracted from municipal solid waste. Polymers 13(3670):1–17

    Google Scholar 

  87. Reis JML, Coelho JLV, Monteiro AH, Costa Mattos HS (2012) Tensile behavior of glass/epoxy laminate at varying strain rates and temperatures. Compos B Eng 43(4):2041–2046

    Article  CAS  Google Scholar 

  88. Nieto SPR, Giraldo ES, Pedrao D, Calderon G, Valbuena CC (2014) Influence of nylon on the tensile strength of a polymer matrix composite material. Tecciencia 9(16):78–84

    Google Scholar 

  89. Dong C, Davies IJ (2012) Flexural properties of glass and carbon fiber reinforced epoxy hybrid composites. J Mater Des Appl 227(4):308–317

    Google Scholar 

  90. Navaneethan KS, Nandhini BK (2021) A study on mechanical properties of synthetic fiber-reinforced polymer composites. AIP Conf Proc 2387:1–8

    Google Scholar 

  91. Sangeeta D, Shubhajit D (2021) Properties for polymer, metal, and ceramic-based composite materials. Encycl Mater Compos 2:815–821

    Google Scholar 

  92. Mohamad N, Latiff AA, Ab Maulod HE, Azam MA, Abd Manaf ME (2014) Polym Plast Technol Eng 53(2):167–172

    Google Scholar 

  93. Karim AA, Kader EE, Hamod AA, Abdulrahman AJ (2018) Mechanical properties of a hybrid composite material (epoxu0polysulfide rubber) reinforced with fibers. IOP Conf Ser Mater Sci Eng 433:1–9

    Article  Google Scholar 

  94. Shesan OJ, Agwuncha CS, Anusionwu GC, Neerish R, Rotimi SE (2019) Fiber-matrix relationship for composites preparation. Renew Sustain Compos 1–24

    Google Scholar 

  95. Odesanya KO, Ahmad R, Jawaid M, Bingol S, Adebayo GO, Wong YH (2021) Natural fiber-reinforced composite for ballistic applications: a review. J Polym Environ 29:3795–3812

    Article  CAS  Google Scholar 

  96. Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: a review. Polymers 11(751):1–26

    Google Scholar 

  97. Golewski P, Rusinek A, Sadowski T (2020) Material characterization of PMC/TBC composite under high strain rates and elevated temperatures. Materials (Basel) 13(1):167–173

    Google Scholar 

  98. Frackowaik S, Ludwickzak J, Leluk K (2018) Man-made and natural fibers as a reinforcement in fully biodegradable polymer composites: a concise study. J Polym Environ 26:4360–4368

    Article  Google Scholar 

  99. Khayal OMES (2020) Delamination phenomenon in composite laminated plates and beams. Bioprocess Eng 4(1):9–16

    Article  Google Scholar 

  100. Rahman MA, Parvin F, Hasan M, Hoque ME (2015) Introduction to the manufacturing of natural fiber-reinforced polymer composites. In: Manufacturing of natural fiber reinforced polymer composites. Springer, pp 17–43

    Google Scholar 

  101. Kong I, Tshai KY, Hoque ME (2015) Manufacturing of natural fiber-reinforced polymer composites by solvent casting method. In: Manufacturing of natural fiber reinforced polymer composites. Springer, pp 331–349

    Google Scholar 

  102. Orue A, Eceiza A, Arbelaiz A (2018) Pretreatments of natural fibers for polymer composite materials. In: Lignocellulosic composite materials. Springer, pp 137–175

    Google Scholar 

  103. Rohadi TNT, Ridzuan MJM, Majis MSA, Cheng EM, Norasni MJ, Marsi N (2021) Swelling behaviors of the composite film with alternating fiber reinforcement and aqueous media. J Phys Conf Ser 2051(1):1–10

    Google Scholar 

  104. Patra AK, Ray I, Alien JS (2021) Introduction to fracture failure analysis of fiber-reinforced polymer matrix composites. In: Fracture failure analysis of fiber reinforced polymer matrix composites. Springer, pp 1–25

    Google Scholar 

  105. Khan MN, Roy JK, Akter N, Zaman HU, Islam T, Khan AK (2012) Production and properties of short jute and short E-glass fiber-reinforced polypropylene-based composites. Open J Compos Mater 2(2):40–47

    Article  CAS  Google Scholar 

  106. Hee-Soo K, Byoung-Ho L, Seung-Woo C, Sumin K, Hyun-Joong K (2007) The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Compos Part A Appl Sci Manuf 38(6):1473–1482

    Article  Google Scholar 

  107. Hashim MM, Marsi N, Letchumanan T, Rus AZM, Jamir MRM, Hassan N (2021) Bending strength analysis of HDPE plastic reinforced wood waste and thermoplastic polymer to replace ceramic tile composites. J Phys Conf Ser 2051(1):1–6

    Article  Google Scholar 

  108. Fodzi MHM, Marsi N, Rus AZM, Hassan NNM, Mahmood S, Huzaisham NA, Singam RT (2020) Izod impact behavior of polymer composite solid waste disposal with epoxy-matrix. Test Eng Manag 81:607–612

    Google Scholar 

  109. Faizi MK, Shahriman AB, Abdul Majid MS, Shamsul BMT, Ng YG, Basah SN, Cheng EM, Afendi M, Zuradzman MR, Khairunizam WAN, Hazry D (2017) An overview of the oil palm empty fruit bunch (OPEFB) potential as reinforcing fiber in polymer composite for energy absorption applications. In: MATEC web of conferences, vol 90, pp 1–9

    Google Scholar 

  110. Yeoh FH, Lee CS, Kang YB, Wong SF, Cheng SF, Ng WS (2020) Production of biodegradable palm oil-based polyurethane as a potential biomaterial for biomedical applications. Polymers 12(1842):1–26

    Google Scholar 

  111. Khalid M, Ratnam CT, Chuah TG, Salmiaton A, Choong TSY (2008) Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose. Mater Des 19(1):173–178

    Article  Google Scholar 

  112. Akonda MH, El-Dessouky HM (2019) Effect of maleic-anhydride grafting on the properties of flax reinforced polypropylene textile composites. J Text Sci Technol 5(4):69–85

    Article  Google Scholar 

  113. Pilipovic A, Ilincic P, Petrusa J, Domitran Z (2020) Influence of polymer composites and memory foam on energy absorption in-vehicle application. Polymers 12(6):1–12

    Article  Google Scholar 

  114. Nanda S, Berruti F (2021) Municipal solid waste management and landfilling technologies: a review. Environ Chem Lett 19:1433–1456

    Article  CAS  Google Scholar 

  115. Iduman CI, Iheoma CN (2019) Novel trends in plastic waste management. In: Earth and environmental sciences: waste reduction, recycling, and utilization for value added products. Springer, vol 1204, pp 1–20

    Google Scholar 

  116. Priti, Mandal K (2019) Review on the evolution of municipal solid waste management in India: practices, challenges and policy implications. J Mater Cycles Waste Manag 21:1263–1279

    Google Scholar 

  117. Dixit S, Yadav VL (2021) Biodegradable polymer composite films for green packaging applications. In: Handbook of nanomaterials and nanocomposites for energy and environmental applications, pp 177–193

    Google Scholar 

  118. Lamba P, Kaur DP, Raj S, Sorout J (2021) Recycling/reuse of plastic waste as construction material for sustainable development: a review. Environ Sci Pollut Res 1–27

    Google Scholar 

  119. Moskaleva A, Safonov A, Hernandez-Montez E (2021) Fiber-reinforced polymers in freeform structures: a review. Building 11(481):1–27

    Google Scholar 

  120. Chawla KK (2019) Polymer matrix composites. In: Composite materials. Springer, pp 139–198

    Google Scholar 

  121. Pan D, Su F, Liu C, Guo Z (2020) Research progress for plastic waste management and manufacture of value-added products. Adv Compos Hybrid Mater 3:443–461

    Article  CAS  Google Scholar 

  122. Andrews SGJ, Rama V, Mythili CV (2017) Synthesis and characterization of polymer resins from a renewable resource. Int J Plast Technol 21:427–443

    Article  Google Scholar 

  123. Alzomor A, Rus AZM, Wahab HA, Salim NSM, Marsi N, Zulhakimie MA, Farid MM (2020) Dynamic mechanical analysis and morphology of petroleum-based and bio-epoxy foams with wood filler. AIP Conf Proc 2339:1–6

    Google Scholar 

  124. Liu W, Zheng Y, Xiaozhi H, Xiangyu H, Chen Y (2019) Interfacial bonding enhancement on the epoxy adhesive joint between engineered bamboo and steel substrates with resin pre-coating surface treatment. Wood Sci Technol 53:785–799

    Article  CAS  Google Scholar 

  125. Marsi N, Subramaniam L, Rus AZM, Sulong N, Fodzi MHM, Huzaisham NA, Yusuf NAAN, Mahmood S, Shaari MF, Shariff HH (2020) IOP Conf Ser Mater Sci Eng 854(1):1–7

    Google Scholar 

  126. Kamran-Pirzaman A, Rostamian Y, Babatabar S (2020) Surface improvement effect of silica nanoparticles on epoxy nanocomposites mechanical and physical properties and curing kinetic. J Polym Res 27(3):1–12

    Google Scholar 

  127. Lo J, Anders M, Centea T, Nutt SR (2016) The effect of process parameters on volatile release for a benzoxazine-epoxy RTM resin. Compos Part A Appl Sci Manuf 84:326–335

    Article  CAS  Google Scholar 

  128. Younis AA, El-Wakil AA (2021) New composites from waste polypropylene/eggshell are characterized by high flame-retardant and mechanical properties. Fibers Polym 1–13

    Google Scholar 

  129. Shakuntala O, Raghavendra G, Kumar AS (2014) Effect of filler loading on mechanical and tribological properties of wood apple shell reinforced epoxy composite. Adv Mater Sci Eng 1–6

    Google Scholar 

  130. Zhang X, Chen L, Mulholland T, Osswald TA (2019) Characterization of mechanical properties and fracture mode of PLA and copper/PLA composite part manufactured by fused deposition modeling. SN Appl Sci 1(616):1–8

    Google Scholar 

  131. Jong OK, Main NM, Rashid AHA, Marsi N, Masrol SR (2020) Tensile properties of areca leaf sheath (ALS) subjected to flattening process for disposable plate making application: effect of thickness and flattening pressure. Int J Mech Product Eng Res Dev 10(1):21–23

    Google Scholar 

  132. Nasir K, Rashid AHA, Razak NAA, Shaari MF, Roslan MN, Shamsudin S, Ansar MS, Husain SNH, Dzulkefli S, Marsi N (2019) The tensile performance of r-PET bottle string: effects of different string sizes and cutting axes. Univ J Mech Eng 7(6):1–6

    Google Scholar 

  133. Zainal Abidin HE, Ooi PC, Tiong TY, Marsi N, Ismardi A, Mohd Noor M, Nik Zaini Fathi NAF, Abd Aziz N, Sahari SK, Sugandi G, Yunas J, Dee CF (2020) Stress and deformation of optimally shaped silicon microneedles for transdermal drug delivery. J Pharm Sci 109(8):2485–2492

    Google Scholar 

  134. Bezimyanniy YG, Vyshniakov LR, Mazna OV, Vysotskyy AM, Komarov KA, Neshpor OV (2018) Assessment of the protective properties of impact-resistant ceramic-polymer composites using acoustic nondestructive methods. Powder Metall Metal Ceram 57:242–249

    Article  CAS  Google Scholar 

  135. Marsi N, Rus AZM, Sulong N (2017) Vibration performance of lightweight concrete coated biopolymer based on used cooking oil. ARPN J Eng Appl Sci 12(14):4236–4242

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noraini Marsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hashim, M.M., Marsi, N., Rus, A.Z.M., Sharom, N.S.M., Said, A.M. (2023). Natural Fiber of Palm Empty Fruit Bunches (PEFB) Reinforced Epoxy Resin as Polymer Composites. In: Ariffin, A.H., Latif, N.A., Mahmod, M.F.b., Mohamad, Z.B. (eds) Structural Integrity and Monitoring for Composite Materials. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-19-6282-0_14

Download citation

Publish with us

Policies and ethics