Skip to main content

Adaptive Neural Control for Output Constrained Block-Structure Affine Nonlinear Systems via Command Filter

  • Conference paper
  • First Online:
Proceedings of 2022 Chinese Intelligent Systems Conference (CISC 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 950))

Included in the following conference series:

  • 796 Accesses

Abstract

In this paper, adaptive neural tracking control is proposed by the aid of the error compensation mechanism for block-structure affine nonlinear systems with output restrictions and unmodeled dynamics. Based on the property of unmodeled dynamics, an available signal constructed by the first-order linear system is utilized to deal with the dynamical uncertainties. The unknown nonlinear smooth function produced in the design process of virtual control is estimated by radial basis function neural networks (RBFNNs). A barrier Lyapunov function is used to deal with the output restrictions. All the signals in the controlled system are shown to be semi-globally uniformly ultimately bounded (SGUUB) by introducing all compensation signals to the overall Lyapunov function and using the compact set in traditional dynamic surface control (DSC) in the stability analysis. A 2-link flexible joint robot system is selected to verify the feasibility of the developed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charalampos, P.B., George, A.R.: Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems. IEEE Trans. Autom. Control 55(5), 1220–1226 (2010). https://doi.org/10.1109/TAC.2010.2042508

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, M., Mei, R., Jiang, B.: Sliding mode control for a class of uncertain MIMO nonlinear systems with application to near-space vehicles. Math. Prob. Eng. 2013, 180589 (2013). https://doi.org/10.1155/2013/180589

    Article  MathSciNet  Google Scholar 

  3. Guo, X.X., Yan, W., Cui, R.: Integral reinforcement learning-based adaptive NN control for continuous-time nonlinear MIMO systems with unknown control directions. IEEE Trans. Syst. Man. Cybern. Syst. 50(11), 4068–4077 (2019). https://doi.org/10.1109/TSMC.2019.2897221

    Article  Google Scholar 

  4. Jin, X.: Adaptive decentralized finite-time output tracking control for MIMO interconnected nonlinear systems with output constraints and actuator faults. Int. J. Robust Nonlinear Control 28(5), 1808–1829 (2017). https://doi.org/10.1002/rnc.3987

    Article  MathSciNet  MATH  Google Scholar 

  5. Tong, S., Li, Y., Shi, P.: Observer-based adaptive fuzzy backstepping output feedback control of uncertain MIMO pure-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 20(4), 771–785 (2012). https://doi.org/10.1109/TFUZZ.2012.2183604

    Article  Google Scholar 

  6. Kanellakopoulos, I., Kokotovic, P.V., Morse, A.S.: Systematic design of adaptive controllers for feedback linearizable systems. IEEE Trans. Autom. Control 36(11), 1241–1253 (1991). https://doi.org/10.23919/ACC.1991.4791451

    Article  MathSciNet  MATH  Google Scholar 

  7. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    MATH  Google Scholar 

  8. Zhang, T., Wen, H., Zhu, Q.: Adaptive fuzzy control of nonlinear systems in pure feedback form based on input-to-stability. IEEE Trans. Fuzzy Syst. 18(1), 80–93 (2010). https://doi.org/10.1109/TFUZZ.2009.2036906

    Article  Google Scholar 

  9. Swaroop, D., Hedrick, J.K., Yip, P.P.: Dynamic surface control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 45(10), 1898–1899 (2000). https://doi.org/10.1109/TAC.2000.880994

    Article  Google Scholar 

  10. Kostarigka, A.K., Rovithakis, G.A.: Neural network output feedback passivation of MIMO uncertain systems: the case of unmodeled dynamics. In: European Control Conference, pp. 3299–3304 (2009). https://doi.org/10.23919/ECC.2009.7074914

  11. Jiang, Z., Hill, D.J.: A robust adaptive backstepping scheme for nonlinear systems with unmodeled dynamics. IEEE Trans. Autom. Control 44(9), 1705–1711 (1999). https://doi.org/10.1109/9.788536

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, T., Gao, Z.: Adaptive dynamic surface control including dynamic uncertainties. Control Decis. 28(10), 1541–1546 (2013)

    MATH  Google Scholar 

  13. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009). https://doi.org/10.1016/j.automatica.2008.11.017

    Article  MathSciNet  MATH  Google Scholar 

  14. Ren, B., Sam, G.S., Peng, T.K., Lee, T.H.: Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. IEEE Trans. Neural Netw. 21(8), 1339–1345 (2010). https://doi.org/10.1109/TNN.2010.2047115

    Article  Google Scholar 

  15. Wang, N., Zhang, T., Yi, Y., Wang, Q.: Adaptive control of output feedback nonlinear systems with unmodeled dynamics and output constraint. J. Franklin Inst. 354(13), 5176–5200 (2017). https://doi.org/10.1016/j.jfranklin.2017.04.017

    Article  MathSciNet  MATH  Google Scholar 

  16. Jin, X.: Adaptive decentralized finite-time output tracking control for MIMO interconnected nonlinear systems with output constraints and actuator faults. Int. J. Robust Nonlinear Control 28(5), 1808–1829 (2017). https://doi.org/10.1002/rnc.3987

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, Z., Li, Z., Chen, L.: Adaptive neural control of uncertain MIMO nonlinear systems with state and input constraints. IEEE Trans. Neural Netw. Learn. Syst. 28(6), 1318–1330 (2017). https://doi.org/10.1109/TNNLS.2016.2538779

    Article  Google Scholar 

  18. Zhou, Q., Shi, P., Tian, Y.: Approximation based adaptive tracking control for MIMO nonlinear systems with input saturation. IEEE Trans. Cybern. 45(10), 2119–2128 (2015). https://doi.org/10.1109/TCYB.2014.2365778

    Article  Google Scholar 

  19. Li, Y., Li, T., Tong, S.: Adaptive neural networks output feedback dynamic surface control design for MIMO pure-feedback nonlinear systems with hysteresis. Neurocomputing 198, 58–68 (2016). https://doi.org/10.1016/j.neucom.2015.05.141

    Article  Google Scholar 

  20. Dong, W., Farrell, J.A., Polycarpou, M.M., Djapic, V., Sharma, M.: Command filtered adaptive backstepping. IEEE Trans. Control Syst. Technol. 20(3), 566–580 (2011). https://doi.org/10.1109/TCST.2011.2121907

    Article  Google Scholar 

  21. Yu, J., Chen, B., Yu, H., Lin, C., Zhao, L.: Neural networks-based command filtering control of nonlinear systems with uncertain disturbance. Inf. Sci. 426, 50–60 (2018). https://doi.org/10.1016/j.ins.2017.10.027

    Article  MathSciNet  MATH  Google Scholar 

  22. Yu, J., Shi, P., Zhao, L.: Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica 92, 173–180 (2018). https://doi.org/10.1016/j.automatica.2018.03.033

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, H., Zhang, T., Xia, X.: Adaptive neural dynamic surface control of MIMO pure-feedback nonlinear systems with output constraints. Neurocomputing 333, 101–109 (2019). https://doi.org/10.1016/j.neucom.2018.12.011

    Article  Google Scholar 

  24. Zhang, T., Hua, Y., Xia, X., Yi, Y.: Unified adaptive event-triggered control of uncertain multi-input multi-output nonlinear systems with dynamic and static constraints. Int. J. Robust Nonlinear Control 31(6), 2371–2392 (2021). https://doi.org/10.1002/rnc.5401

    Article  MathSciNet  Google Scholar 

  25. Zhu, X., Ding, W., Zhang, T.: Command filter-based adaptive prescribed performance tracking control for uncertain pure-feedback nonlinear systems with full-state time-varying constraints. Int. J. Robust Nonlinear Control 31(11), 5312–5329 (2021). https://doi.org/10.1002/rnc.5540

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (62073283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianping Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, M., Yu, J., Zhang, T., Zhu, B. (2022). Adaptive Neural Control for Output Constrained Block-Structure Affine Nonlinear Systems via Command Filter. In: Jia, Y., Zhang, W., Fu, Y., Zhao, S. (eds) Proceedings of 2022 Chinese Intelligent Systems Conference. CISC 2022. Lecture Notes in Electrical Engineering, vol 950. Springer, Singapore. https://doi.org/10.1007/978-981-19-6203-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6203-5_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6202-8

  • Online ISBN: 978-981-19-6203-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics