Skip to main content

Assessment of Early Graft Function and Management of Early Graft Failure

  • Chapter
  • First Online:
Peri-operative Anesthetic Management in Liver Transplantation

Abstract

Liver transplantation (LT) has now been universally accepted as the standard of care for patients with decompensated end-stage liver disease, acute liver failure (ALF), and a few other metabolic disorders. Resumption of graft function during and immediately after surgery is very crucial in determining patient outcomes. Graft survival approximates patient survival in most circumstances. Although the rates of cadaveric donation have increased, there seems to be a disproportionate increase in the number of recipients on waitlist. Living donor liver transplantation (LDLT) was developed with the main purpose of reducing waitlist mortality which, unfortunately, has not been able to provide a complete solution for the problem. To overcome this, the transplant community has increased the margins for acceptance of a donor in deceased donor liver transplantation (DDLT) and a smaller volume graft in LDLT to prioritize donor safety [1, 2]. This has led to increasing use of marginal grafts which increase the likelihood of primary graft dysfunction (PGD). It has been well demonstrated that recipients who develop PGD have a higher risk of morbidity and mortality, but the benefits might outweigh the risks of dying in the waitlist without a suitable organ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALF:

acute liver failure

ALT:

Alanine aminotransferases

AST:

Aspartate aminotransferases

CIT:

cold ischemia time

CRRT:

continuous renal replacement therapy

DCD:

donation after cardiac death

DDLT:

Deceased donor liver transplantation

EAD:

early allograft dysfunction

ECLS:

extracorporeal liver support systems

HVP:

high volume plasmapheresis

ICG-PDR:

Indocyanine green-plasma disappearance rate

IPGF:

initial poor graft function

IRI:

ischemia reperfusion injury

LDLT:

Living donor liver transplantation

LiMax:

Liver maximal function capacity

LT:

Liver transplantation

MARS:

Molecular adsorbent recirculating system

MEAF:

Model for early allograft function

NAC:

N-acetyl cysteine

PEEP:

positive end expiratory pressure

PGD:

primary graft dysfunction

PLP:

Plasmapheresis

PNF:

primary non function

PRS:

reperfusion syndrome

RRT:

renal replacement therapy

SIRS:

systemic inflammatory response

References

  1. Lai JC, Feng S, Roberts JP. An examination of liver offers to candidates on the liver transplant wait-list. Gastroenterology. 2012;143(5):1261–5.

    Article  Google Scholar 

  2. Barshes NR, Horwitz IB, Franzini L, Vierling JM, Goss JA. Waitlist mortality decreases with increased use of extended criteria donor liver grafts at adult liver transplant centers. Am J Transplant. 2007;7(5):1265–70.

    Article  CAS  Google Scholar 

  3. Zhai Y, Petrowsky H, Hong JC, Busuttil RW, Kupiec-Weglinski JW. Ischaemia-reperfusion injury in liver transplantation--from bench to bedside. Nat Rev Gastroenterol Hepatol. 2013;10(2):79–89.

    Article  CAS  Google Scholar 

  4. Clavien PA, Harvey PR, Strasberg SM. Preservation and reperfusion injuries in liver allografts. An overview and synthesis of current studies. Transplantation. 1992;53(5):957–78.

    Article  CAS  Google Scholar 

  5. Burton JR Jr, Rosen HR. Diagnosis and management of allograft failure. Clin Liver Dis. 2006;10(2):407–35.

    Article  Google Scholar 

  6. Clavien PA. Sinusoidal endothelial cell injury during hepatic preservation and reperfusion. Hepatology. 1998;28(2):281–5.

    Article  CAS  Google Scholar 

  7. Deschenes M, Forbes C, Tchervenkov J, Barkun J, Metrakos P, Tector J, et al. Use of older donor livers is associated with more extensive ischemic damage on intraoperative biopsies during liver transplantation. Liver Transpl Surg. 1999;5(5):357–61.

    Article  CAS  Google Scholar 

  8. Ali JM, Davies SE, Brais RJ, Randle LV, Klinck JR, Allison ME, et al. Analysis of ischemia/reperfusion injury in time-zero biopsies predicts liver allograft outcomes. Liver Transpl. 2015;21(4):487–99.

    Article  Google Scholar 

  9. Bolondi G, Mocchegiani F, Montalti R, Nicolini D, Vivarelli M, De Pietri L. Predictive factors of short term outcome after liver transplantation: a review. World J Gastroenterol. 2016;22(26):5936–49.

    Article  CAS  Google Scholar 

  10. Jochmans I, Fieuws S, Monbaliu D, Pirenne J. “Model for early allograft function” outperforms “early allograft dysfunction” as a predictor of transplant survival. Transplantation. 2017;101(8):e258–e64.

    Article  Google Scholar 

  11. Olthoff KM, Kulik L, Samstein B, Kaminski M, Abecassis M, Emond J, et al. Validation of a current definition of early allograft dysfunction in liver transplant recipients and analysis of risk factors. Liver Transpl. 2010;16(8):943–9.

    Article  Google Scholar 

  12. Pareja E, Cortes M, Hervas D, Mir J, Valdivieso A, Castell JV, et al. A score model for the continuous grading of early allograft dysfunction severity. Liver Transpl. 2015;21(1):38–46.

    Article  Google Scholar 

  13. Briceno J, Ciria R, de la Mata M, Rufian S, Lopez-Cillero P. Prediction of graft dysfunction based on extended criteria donors in the model for end-stage liver disease score era. Transplantation. 2010;90(5):530–9.

    Article  Google Scholar 

  14. Deschenes M, Belle SH, Krom RA, Zetterman RK, Lake JR. Early allograft dysfunction after liver transplantation: a definition and predictors of outcome. National Institute of Diabetes and Digestive and Kidney Diseases liver transplantation database. Transplantation. 1998;66(3):302–10.

    Article  CAS  Google Scholar 

  15. Howard TK, Klintmalm GB, Cofer JB, Husberg BS, Goldstein RM, Gonwa TA. The influence of preservation injury on rejection in the hepatic transplant recipient. Transplantation. 1990;49(1):103–7.

    Article  CAS  Google Scholar 

  16. Lee DD, Croome KP, Shalev JA, Musto KR, Sharma M, Keaveny AP, et al. Early allograft dysfunction after liver transplantation: an intermediate outcome measure for targeted improvements. Ann Hepatol. 2016;15(1):53–60.

    Article  Google Scholar 

  17. Lee DD, Singh A, Burns JM, Perry DK, Nguyen JH, Taner CB. Early allograft dysfunction in liver transplantation with donation after cardiac death donors results in inferior survival. Liver Transpl. 2014;20(12):1447–53.

    Google Scholar 

  18. Ploeg RJ, D'Alessandro AM, Knechtle SJ, Stegall MD, Pirsch JD, Hoffmann RM, et al. Risk factors for primary dysfunction after liver transplantation--a multivariate analysis. Transplantation. 1993;55(4):807–13.

    Article  CAS  Google Scholar 

  19. Biancofiore G, Bindi ML, Romanelli AM, Bisa M, Boldrini A, Consani G, et al. Postoperative intra-abdominal pressure and renal function after liver transplantation. Arch Surg. 2003;138(7):703–6.

    Article  Google Scholar 

  20. Taner CB, Bulatao IG, Willingham DL, Perry DK, Sibulesky L, Pungpapong S, et al. Events in procurement as risk factors for ischemic cholangiopathy in liver transplantation using donation after cardiac death donors. Liver Transpl. 2012;18(1):100–11.

    Article  Google Scholar 

  21. Pomposelli JJ, Goodrich NP, Emond JC, Humar A, Baker TB, Grant DR, et al. Patterns of early allograft dysfunction in adult live donor liver transplantation: the A2ALL experience. Transplantation. 2016;100(7):1490–9.

    Article  CAS  Google Scholar 

  22. Croome KP, Hernandez-Alejandro R, Chandok N. Early allograft dysfunction is associated with excess resource utilization after liver transplantation. Transplant Proc. 2013;45(1):259–64.

    Article  CAS  Google Scholar 

  23. Croome KP, Wall W, Quan D, Vangala S, McAlister V, Marotta P, et al. Evaluation of the updated definition of early allograft dysfunction in donation after brain death and donation after cardiac death liver allografts. Hepatobiliary Pancreat Dis Int. 2012;11(4):372–6.

    Article  Google Scholar 

  24. Pokorny H, Gruenberger T, Soliman T, Rockenschaub S, Langle F, Steininger R. Organ survival after primary dysfunction of liver grafts in clinical orthotopic liver transplantation. Transpl Int. 2000;13(Suppl 1):S154–7.

    Article  Google Scholar 

  25. Salvalaggio P, Afonso RC, Felga G, Ferraz-Neto BH. A proposal to grade the severity of early allograft dysfunction after liver transplantation. Einstein (Sao Paulo). 2013;11(1):23–31.

    Article  Google Scholar 

  26. Busuttil RW, Tanaka K. The utility of marginal donors in liver transplantation. Liver Transpl. 2003;9(7):651–63.

    Article  Google Scholar 

  27. Feng S, Goodrich NP, Bragg-Gresham JL, Dykstra DM, Punch JD, DebRoy MA, et al. Characteristics associated with liver graft failure: the concept of a donor risk index. Am J Transplant. 2006;6(4):783–90.

    Article  CAS  Google Scholar 

  28. Rana A, Hardy MA, Halazun KJ, Woodland DC, Ratner LE, Samstein B, et al. Survival outcomes following liver transplantation (SOFT) score: a novel method to predict patient survival following liver transplantation. Am J Transplant. 2008;8(12):2537–46.

    Article  CAS  Google Scholar 

  29. Halldorson JB, Bakthavatsalam R, Fix O, Reyes JD, Perkins JD. D-MELD, a simple predictor of post liver transplant mortality for optimization of donor/recipient matching. Am J Transplant. 2009;9(2):318–26.

    Article  CAS  Google Scholar 

  30. Broering DC, Topp S, Schaefer U, Fischer L, Gundlach M, Sterneck M, et al. Split liver transplantation and risk to the adult recipient: analysis using matched pairs. J Am Coll Surg. 2002;195(5):648–57.

    Article  Google Scholar 

  31. Chen XB, Xu MQ. Primary graft dysfunction after liver transplantation. Hepatobiliary Pancreat Dis Int. 2014;13(2):125–37.

    Article  CAS  Google Scholar 

  32. Dhillon N, Walsh L, Kruger B, Ward SC, Godbold JH, Radwan M, et al. A single nucleotide polymorphism of toll-like receptor 4 identifies the risk of developing graft failure after liver transplantation. J Hepatol. 2010;53(1):67–72.

    Article  CAS  Google Scholar 

  33. Mathe Z, Paul A, Molmenti EP, Vernadakis S, Klein CG, Beckebaum S, et al. Liver transplantation with donors over the expected lifespan in the model for end-staged liver disease era: is mother nature punishing us? Liver Int. 2011;31(7):1054–61.

    Article  Google Scholar 

  34. Nanashima A, Pillay P, Verran DJ, Painter D, Nakasuji M, Crawford M, et al. Analysis of initial poor graft function after orthotopic liver transplantation: experience of an australian single liver transplantation center. Transplant Proc. 2002;34(4):1231–5.

    Article  CAS  Google Scholar 

  35. Levesque E, Saliba F, Benhamida S, Ichai P, Azoulay D, Adam R, et al. Plasma disappearance rate of indocyanine green: a tool to evaluate early graft outcome after liver transplantation. Liver Transpl. 2009;15(10):1358–64.

    Article  Google Scholar 

  36. Olmedilla L, Lisbona CJ, Perez-Pena JM, Lopez-Baena JA, Garutti I, Salcedo M, et al. Early measurement of indocyanine green clearance accurately predicts short-term outcomes after liver transplantation. Transplantation. 2016;100(3):613–20.

    Article  CAS  Google Scholar 

  37. Lock JF, Schwabauer E, Martus P, Videv N, Pratschke J, Malinowski M, et al. Early diagnosis of primary nonfunction and indication for reoperation after liver transplantation. Liver Transpl. 2010;16(2):172–80.

    Article  Google Scholar 

  38. Stockmann M, Lock JF, Malinowski M, Niehues SM, Seehofer D, Neuhaus P. The LiMAx test: a new liver function test for predicting postoperative outcome in liver surgery. HPB (Oxford). 2010;12(2):139–46.

    Article  Google Scholar 

  39. Nguyen HB, Rivers EP, Knoblich BP, Jacobsen G, Muzzin A, Ressler JA, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004;32(8):1637–42.

    Article  Google Scholar 

  40. Wu JF, Wu RY, Chen J, Ou-Yang B, Chen MY, Guan XD. Early lactate clearance as a reliable predictor of initial poor graft function after orthotopic liver transplantation. Hepatobiliary Pancreat Dis Int. 2011;10(6):587–92.

    Article  CAS  Google Scholar 

  41. Lesurtel M, Raptis DA, Melloul E, Schlegel A, Oberkofler C, El-Badry AM, et al. Low platelet counts after liver transplantation predict early posttransplant survival: the 60-5 criterion. Liver Transpl. 2014;20(2):147–55.

    Article  Google Scholar 

  42. Li L, Wang H, Yang J, Jiang L, Yang J, Wang W, et al. Immediate postoperative low platelet counts after living donor liver transplantation predict early allograft dysfunction. Medicine (Baltimore). 2015;94(34):e1373.

    Article  Google Scholar 

  43. Zulian MC, Chedid MF, Chedid AD, Grezzana Filho TJ, Leipnitz I, de Araujo A, et al. Low serum factor V level: early predictor of allograft failure and death following liver transplantation. Langenbeck's Arch Surg. 2015;400(5):589–97.

    Article  Google Scholar 

  44. Wagener G, Raffel B, Young AT, Minhaz M, Emond J. Predicting early allograft failure and mortality after liver transplantation: the role of the postoperative model for end-stage liver disease score. Liver Transpl. 2013;19(5):534–42.

    Article  Google Scholar 

  45. Agopian VG, Harlander-Locke MP, Markovic D, Dumronggittigule W, Xia V, Kaldas FM, et al. Evaluation of early allograft function using the liver graft assessment following transplantation risk score model. JAMA Surg. 2018;153(5):436–44.

    Article  Google Scholar 

  46. Chae MS, Kim Y, Lee N, Chung HS, Park CS, Lee J, et al. Graft regeneration and functional recovery in patients with early allograft dysfunction after living-donor liver transplantation. Ann Transplant. 2018;23:481–90.

    Article  CAS  Google Scholar 

  47. Ellul MA, Gholkar SA, Cross TJ. Hepatic encephalopathy due to liver cirrhosis. BMJ. 2015;351:h4187.

    Article  Google Scholar 

  48. Shawcross DL, Wendon JA. The neurological manifestations of acute liver failure. Neurochem Int. 2012;60(7):662–71.

    Article  CAS  Google Scholar 

  49. Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT. Hepatic encephalopathy--definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology. 2002;35(3):716–21.

    Article  Google Scholar 

  50. Brenner RP. The interpretation of the EEG in stupor and coma. Neurologist. 2005;11(5):271–84.

    Article  Google Scholar 

  51. Zivkovic SA. Neurologic complications after liver transplantation. World J Hepatol. 2013;5(8):409–16.

    Article  Google Scholar 

  52. Cruz RJ Jr, DiMartini A, Akhavanheidari M, Iacovoni N, Boardman JF, Donaldson J, et al. Posterior reversible encephalopathy syndrome in liver transplant patients: clinical presentation, risk factors and initial management. Am J Transplant. 2012;12(8):2228–36.

    Article  Google Scholar 

  53. Lidofsky SD, Bass NM, Prager MC, Washington DE, Read AE, Wright TL, et al. Intracranial pressure monitoring and liver transplantation for fulminant hepatic failure. Hepatology. 1992;16(1):1–7.

    Article  CAS  Google Scholar 

  54. Munoz SJ, Robinson M, Northrup B, Bell R, Moritz M, Jarrell B, et al. Elevated intracranial pressure and computed tomography of the brain in fulminant hepatocellular failure. Hepatology. 1991;13(2):209–12.

    Article  CAS  Google Scholar 

  55. European Association for the Study of the Liver. Electronic address eee, Clinical practice guidelines p, Wendon J, Panel m, Cordoba J, Dhawan A, et al. EASL clinical practical guidelines on the management of acute (fulminant) liver failure. J Hepatol. 2017;66(5):1047–81.

    Article  Google Scholar 

  56. Stravitz RT, Lisman T, Luketic VA, Sterling RK, Puri P, Fuchs M, et al. Minimal effects of acute liver injury/acute liver failure on hemostasis as assessed by thromboelastography. J Hepatol. 2012;56(1):129–36.

    Article  Google Scholar 

  57. Blei AT, Olafsson S, Webster S, Levy R. Complications of intracranial pressure monitoring in fulminant hepatic failure. Lancet. 1993;341(8838):157–8.

    Article  CAS  Google Scholar 

  58. Karvellas CJ, Fix OK, Battenhouse H, Durkalski V, Sanders C, Lee WM, et al. Outcomes and complications of intracranial pressure monitoring in acute liver failure: a retrospective cohort study. Crit Care Med. 2014;42(5):1157–67.

    Article  Google Scholar 

  59. Keays RT, Alexander GJ, Williams R. The safety and value of extradural intracranial pressure monitors in fulminant hepatic failure. J Hepatol. 1993;18(2):205–9.

    Article  CAS  Google Scholar 

  60. Vaquero J, Fontana RJ, Larson AM, Bass NM, Davern TJ, Shakil AO, et al. Complications and use of intracranial pressure monitoring in patients with acute liver failure and severe encephalopathy. Liver Transpl. 2005;11(12):1581–9.

    Article  Google Scholar 

  61. Peck M, Wendon J, Sizer E, Auzinger G, Bernal W. Intracranial pressure monitoring in acute liver failure: a review of 10 years experience. Crit Care. 2010;14(S1):P542.

    Article  Google Scholar 

  62. Murphy N, Auzinger G, Bernel W, Wendon J. The effect of hypertonic sodium chloride on intracranial pressure in patients with acute liver failure. Hepatology. 2004;39(2):464–70.

    Article  CAS  Google Scholar 

  63. Stravitz RT, Kramer AH, Davern T, Shaikh AO, Caldwell SH, Mehta RL, et al. Intensive care of patients with acute liver failure: recommendations of the U.S. Acute Liver Failure Study Group. Crit Care Med. 2007;35(11):2498–508.

    Article  Google Scholar 

  64. Audimoolam VK, McPhail MJ, Wendon JA, Willars C, Bernal W, Desai SR, et al. Lung injury and its prognostic significance in acute liver failure. Crit Care Med. 2014;42(3):592–600.

    Article  Google Scholar 

  65. Luo L, Shaver CM, Zhao Z, Koyama T, Calfee CS, Bastarache JA, et al. Clinical predictors of hospital mortality differ between direct and indirect ARDS. Chest. 2017;151(4):755–63.

    Article  Google Scholar 

  66. Sadowitz B, Jain S, Kollisch-Singule M, Satalin J, Andrews P, Habashi N, et al. Preemptive mechanical ventilation can block progressive acute lung injury. World J Crit Care Med. 2016;5(1):74–82.

    Article  Google Scholar 

  67. Young CC, Harris EM, Vacchiano C, Bodnar S, Bukowy B, Elliott RRD, et al. Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations. Br J Anaesth. 2019;123(6):898–913.

    Article  Google Scholar 

  68. Saner FH, Olde Damink SW, Pavlakovic G, Sotiropoulos GC, Radtke A, Treckmann J, et al. How far can we go with positive end-expiratory pressure (PEEP) in liver transplant patients? J Clin Anesth. 2010;22(2):104–9.

    Article  Google Scholar 

  69. Wagener G, Kovalevskaya G, Minhaz M, Mattis F, Emond JC, Landry DW. Vasopressin deficiency and vasodilatory state in end-stage liver disease. J Cardiothorac Vasc Anesth. 2011;25(4):665–70.

    Article  CAS  Google Scholar 

  70. Kendrick JB, Kaye AD, Tong Y, Belani K, Urman RD, Hoffman C, et al. Goal-directed fluid therapy in the perioperative setting. J Anaesthesiol Clin Pharmacol. 2019;35(Suppl 1):S29–34.

    Google Scholar 

  71. Nguyen HB, Jaehne AK, Jayaprakash N, Semler MW, Hegab S, Yataco AC, et al. Early goal-directed therapy in severe sepsis and septic shock: insights and comparisons to ProCESS, ProMISe, and ARISE. Crit Care. 2016;20(1):160.

    Article  Google Scholar 

  72. Bjerring PN, Eefsen M, Hansen BA, Larsen FS. The brain in acute liver failure. A tortuous path from hyperammonemia to cerebral edema. Metab Brain Dis. 2009;24(1):5–14.

    Article  Google Scholar 

  73. Bari K, Garcia-Tsao G. Treatment of portal hypertension. World J Gastroenterol. 2012;18(11):1166–75.

    Article  CAS  Google Scholar 

  74. D'Aragon F, Belley-Cote EP, Meade MO, Lauzier F, Adhikari NK, Briel M, et al. Blood pressure targets for vasopressor therapy: a systematic review. Shock. 2015;43(6):530–9.

    Article  CAS  Google Scholar 

  75. Cardenas A, Gines P, Runyon BA. Is albumin infusion necessary after large volume paracentesis? Liver Int. 2009;29(5):636–40; discussion 40–1.

    Article  Google Scholar 

  76. Tanaka KA, Esper S, Bolliger D. Perioperative factor concentrate therapy. Br J Anaesth. 2013;111(Suppl 1):i35–49.

    Article  Google Scholar 

  77. McDowell Torres D, Stevens RD, Gurakar A. Acute liver failure: a management challenge for the practicing gastroenterologist. Gastroenterol Hepatol (N Y). 2010;6(7):444–50.

    Google Scholar 

  78. Kirchner C, Dirkmann D, Treckmann JW, Paul A, Hartmann M, Saner FH, et al. Coagulation management with factor concentrates in liver transplantation: a single-center experience. Transfusion. 2014;54(10 Pt 2):2760–8.

    Article  Google Scholar 

  79. Hartmann M, Walde C, Dirkmann D, Saner FH. Safety of coagulation factor concentrates guided by ROTEM-analyses in liver transplantation: results from 372 procedures. BMC Anesthesiol. 2019;19(1):97.

    Article  Google Scholar 

  80. Polson J, Lee WM. American Association for the Study of liver D. AASLD position paper: the management of acute liver failure. Hepatology. 2005;41(5):1179–97.

    Article  Google Scholar 

  81. Pichler RH, Huskey J, Kowalewska J, Moiz A, Perkins J, Davis CL, et al. Kidney biopsies may help predict renal function after liver transplantation. Transplantation. 2016;100(10):2122–8.

    Article  Google Scholar 

  82. Skytte Larsson J, Bragadottir G, Redfors B, Ricksten SE. Renal function and oxygenation are impaired early after liver transplantation despite hyperdynamic systemic circulation. Crit Care. 2017;21(1):87.

    Article  Google Scholar 

  83. Thongprayoon C, Kaewput W, Thamcharoen N, Bathini T, Watthanasuntorn K, Lertjitbanjong P, et al. Incidence and impact of acute kidney injury after liver transplantation: a meta-analysis. J Clin Med. 2019;8(3):372.

    Article  CAS  Google Scholar 

  84. Wadei HM, Lee DD, Croome KP, Mai L, Leonard D, Mai ML, et al. Early allograft dysfunction is associated with higher risk of renal nonrecovery after liver transplantation. Transplant Direct. 2018;4(4):e352.

    Article  Google Scholar 

  85. Cardoso FS, Gottfried M, Tujios S, Olson JC, Karvellas CJ, Group USALFS. Continuous renal replacement therapy is associated with reduced serum ammonia levels and mortality in acute liver failure. Hepatology. 2018;67(2):711–20.

    Article  CAS  Google Scholar 

  86. Deep A, Stewart CE, Dhawan A, Douiri A. Effect of continuous renal replacement therapy on outcome in pediatric acute liver failure. Crit Care Med. 2016;44(10):1910–9.

    Article  CAS  Google Scholar 

  87. Knight SR, Oniscu GC, Devey L, Simpson KJ, Wigmore SJ, Harrison EM. Use of renal replacement therapy may influence graft outcomes following liver transplantation for acute liver failure: a propensity-score matched population-based retrospective cohort study. PLoS One. 2016;11(3):e0148782.

    Article  Google Scholar 

  88. Davenport A, Will EJ, Davidson AM. Improved cardiovascular stability during continuous modes of renal replacement therapy in critically ill patients with acute hepatic and renal failure. Crit Care Med. 1993;21(3):328–38.

    Article  CAS  Google Scholar 

  89. Davenport A, Will EJ, Davison AM. Effect of renal replacement therapy on patients with combined acute renal and fulminant hepatic failure. Kidney Int Suppl. 1993;41:S245–51.

    CAS  Google Scholar 

  90. Slack AJ, Auzinger G, Willars C, Dew T, Musto R, Corsilli D, et al. Ammonia clearance with haemofiltration in adults with liver disease. Liver Int. 2014;34(1):42–8.

    Article  CAS  Google Scholar 

  91. Donnelly MC, Hayes PC, Simpson KJ. Role of inflammation and infection in the pathogenesis of human acute liver failure: clinical implications for monitoring and therapy. World J Gastroenterol. 2016;22(26):5958–70.

    Article  CAS  Google Scholar 

  92. Plauth M, Bernal W, Dasarathy S, Merli M, Plank LD, Schutz T, et al. ESPEN guideline on clinical nutrition in liver disease. Clin Nutr. 2019;38(2):485–521.

    Article  Google Scholar 

  93. Perseghin G, Mazzaferro V, Benedini S, Pulvirenti A, Coppa J, Regalia E, et al. Resting energy expenditure in diabetic and nondiabetic patients with liver cirrhosis: relation with insulin sensitivity and effect of liver transplantation and immunosuppressive therapy. Am J Clin Nutr. 2002;76(3):541–8.

    Article  CAS  Google Scholar 

  94. Plank LD, Metzger DJ, McCall JL, Barclay KL, Gane EJ, Streat SJ, et al. Sequential changes in the metabolic response to orthotopic liver transplantation during the first year after surgery. Ann Surg. 2001;234(2):245–55.

    Article  CAS  Google Scholar 

  95. Pillai AA, Levitsky J. Overview of immunosuppression in liver transplantation. World J Gastroenterol. 2009;15(34):4225–33.

    Article  CAS  Google Scholar 

  96. Meister A. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther. 1991;51(2):155–94.

    Article  CAS  Google Scholar 

  97. Fukuzawa K, Emre S, Senyuz O, Acarli K, Schwartz ME, Miller CM. N-acetylcysteine ameliorates reperfusion injury after warm hepatic ischemia. Transplantation. 1995;59(1):6–9.

    Article  CAS  Google Scholar 

  98. Harrison P, Wendon J, Williams R. Evidence of increased guanylate cyclase activation by acetylcysteine in fulminant hepatic failure. Hepatology. 1996;23(5):1067–72.

    Article  CAS  Google Scholar 

  99. Kharazmi A, Nielsen H, Schiotz PO. N-acetylcysteine inhibits human neutrophil and monocyte chemotaxis and oxidative metabolism. Int J Immunopharmacol. 1988;10(1):39–46.

    Article  CAS  Google Scholar 

  100. Kim DY, Jun JH, Lee HL, Woo KM, Ryoo HM, Kim GS, et al. N-acetylcysteine prevents LPS-induced pro-inflammatory cytokines and MMP2 production in gingival fibroblasts. Arch Pharm Res. 2007;30(10):1283–92.

    Article  CAS  Google Scholar 

  101. Montalvo-Jave EE, Escalante-Tattersfield T, Ortega-Salgado JA, Pina E, Geller DA. Factors in the pathophysiology of the liver ischemia-reperfusion injury. J Surg Res. 2008;147(1):153–9.

    Article  CAS  Google Scholar 

  102. Harrison PM, Wendon JA, Gimson AE, Alexander GJ, Williams R. Improvement by acetylcysteine of hemodynamics and oxygen transport in fulminant hepatic failure. N Engl J Med. 1991;324(26):1852–7.

    Article  CAS  Google Scholar 

  103. Hu J, Zhang Q, Ren X, Sun Z, Quan Q. Efficacy and safety of acetylcysteine in "non-acetaminophen" acute liver failure: a meta-analysis of prospective clinical trials. Clin Res Hepatol Gastroenterol. 2015;39(5):594–9.

    Article  CAS  Google Scholar 

  104. Lee WM, Hynan LS, Rossaro L, Fontana RJ, Stravitz RT, Larson AM, et al. Intravenous N-acetylcysteine improves transplant-free survival in early stage non-acetaminophen acute liver failure. Gastroenterology. 2009;137(3):856–64 e1.

    Article  CAS  Google Scholar 

  105. Squires RH, Dhawan A, Alonso E, Narkewicz MR, Shneider BL, Rodriguez-Baez N, et al. Intravenous N-acetylcysteine in pediatric patients with nonacetaminophen acute liver failure: a placebo-controlled clinical trial. Hepatology. 2013;57(4):1542–9.

    Article  CAS  Google Scholar 

  106. Stravitz RT, Sanyal AJ, Reisch J, Bajaj JS, Mirshahi F, Cheng J, et al. Effects of N-acetylcysteine on cytokines in non-acetaminophen acute liver failure: potential mechanism of improvement in transplant-free survival. Liver Int. 2013;33(9):1324–31.

    Article  CAS  Google Scholar 

  107. Thies JC, Koeppel TA, Lehmann T, Schemmer P, Otto G, Post S. Efficacy of N-acetylcysteine as a hepatoprotective agent in liver transplantation: an experimental study. Transplant Proc. 1997;29(1–2):1326–7.

    Article  CAS  Google Scholar 

  108. Bromley PN, Cottam SJ, Hilmi I, Tan KC, Heaton N, Ginsburg R, et al. Effects of intraoperative N-acetylcysteine in orthotopic liver transplantation. Br J Anaesth. 1995;75(3):352–4.

    Article  CAS  Google Scholar 

  109. Hilmi IA, Peng Z, Planinsic RM, Damian D, Dai F, Tyurina YY, et al. N-acetylcysteine does not prevent hepatorenal ischaemia-reperfusion injury in patients undergoing orthotopic liver transplantation. Nephrol Dial Transplant. 2010;25(7):2328–33.

    Article  CAS  Google Scholar 

  110. Bavikatte A, Sudhindran S. Perioperative influence of N-acetylcysteine (NAC) on early post transplant outcome of recepient in live donor liver transplantation (LDLT): a double blind randomised controlled trial. HPB. 2016;18:e160.

    Article  Google Scholar 

  111. D'Amico F, Vitale A, Piovan D, Bertacco A, Ramirez Morales R, Chiara Frigo A, et al. Use of N-acetylcysteine during liver procurement: a prospective randomized controlled study. Liver Transpl. 2013;19(2):135–44.

    Article  Google Scholar 

  112. Tan EX, Wang MX, Pang J, Lee GH. Plasma exchange in patients with acute and acute-on-chronic liver failure: a systematic review. World J Gastroenterol. 2020;26(2):219–45.

    Article  CAS  Google Scholar 

  113. Larsen FS, Schmidt LE, Bernsmeier C, Rasmussen A, Isoniemi H, Patel VC, et al. High-volume plasma exchange in patients with acute liver failure: an open randomised controlled trial. J Hepatol. 2016;64(1):69–78.

    Article  Google Scholar 

  114. Camci C, Akdogan M, Gurakar A, Gilcher R, Rose J, Monlux R, et al. The impact of total plasma exchange on early allograft dysfunction. Transplant Proc. 2004;36(9):2567–9.

    Article  CAS  Google Scholar 

  115. Akdogan M, Camci C, Gurakar A, Gilcher R, Alamian S, Wright H, et al. The effect of total plasma exchange on fulminant hepatic failure. J Clin Apher. 2006;21(2):96–9.

    Article  CAS  Google Scholar 

  116. Choe W, Kwon SW, Kim SS, Hwang S, Song GW, Lee SG. Effects of therapeutic plasma exchange on early allograft dysfunction after liver transplantation. J Clin Apher. 2017;32(3):147–53.

    Article  Google Scholar 

  117. Yamamoto R, Nagasawa Y, Marubashi S, Furumatsu Y, Iwatani H, Iio K, et al. Early plasma exchange for progressive liver failure in recipients of adult-to-adult living-related liver transplants. Blood Purif. 2009;28(1):40–6.

    Article  Google Scholar 

  118. Park CS, Hwang S, Park HW, Park YH, Lee HJ, Namgoong JM, et al. Role of plasmapheresis as liver support for early graft dysfunction following adult living donor liver transplantation. Transplant Proc. 2012;44(3):749–51.

    Article  Google Scholar 

  119. Lee JY, Kim SB, Chang JW, Park SK, Kwon SW, Song KW, et al. Comparison of the molecular adsorbent recirculating system and plasmapheresis for patients with graft dysfunction after liver transplantation. Transplant Proc. 2010;42(7):2625–30.

    Article  CAS  Google Scholar 

  120. Rammohan A, Sachan D, Logidasan S, Sathyanesan J, Palaniappan R, Rela M. World J Hematol 2017;6(1):24–7.

    Google Scholar 

  121. Cheng CW, Hendrickson JE, Tormey CA, Sidhu D. Therapeutic plasma exchange and its impact on drug levels: an ACLPS critical review. Am J Clin Pathol. 2017;148(3):190–8.

    Article  CAS  Google Scholar 

  122. Ibrahim RB, Liu C, Cronin SM, Murphy BC, Cha R, Swerdlow P, et al. Drug removal by plasmapheresis: an evidence-based review. Pharmacotherapy. 2007;27(11):1529–49.

    Article  CAS  Google Scholar 

  123. Larsen FS. Artificial liver support in acute and acute-on-chronic liver failure. Curr Opin Crit Care. 2019;25(2):187–91.

    Article  Google Scholar 

  124. Alshamsi F, Alshammari K, Belley-Cote E, Dionne J, Albrahim T, Albudoor B, et al. Extracorporeal liver support in patients with liver failure: a systematic review and meta-analysis of randomized trials. Intensive Care Med. 2020;46(1):1–16.

    Article  Google Scholar 

  125. Fuhrmann V, Bauer M, Wilmer A. The persistent potential of extracorporeal therapies in liver failure. Intensive Care Med. 2020;46(3):528–30.

    Article  Google Scholar 

  126. Cavalcanti AB, De Vasconcelos CP, Perroni de Oliveira M, Rother ET, Ferraz L Jr. Prostaglandins for adult liver transplanted patients. Cochrane Database Syst Rev. 2011;11:CD006006.

    Google Scholar 

  127. Barthel E, Rauchfuss F, Hoyer H, Habrecht O, Jandt K, Gotz M, et al. Impact of stable PGI(2) analog iloprost on early graft viability after liver transplantation: a pilot study. Clin Transpl. 2012;26(1):E38–47.

    Article  Google Scholar 

  128. Barthel E, Rauchfuss F, Hoyer H, Breternitz M, Jandt K, Settmacher U. The PRAISE study: a prospective, multi-center, randomized, double blinded, placebo-controlled study for the evaluation of iloprost in the early postoperative period after liver transplantation (ISRCTN12622749). BMC Surg. 2013;13:1.

    Article  Google Scholar 

  129. Bharathan VK, Chandran B, Gopalakrishnan U, Varghese CT, Menon RN, Balakrishnan D, et al. Perioperative prostaglandin e1 infusion in living donor liver transplantation: a double-blind, placebo-controlled randomized trial. Liver Transpl. 2016;22(8):1067–74.

    Article  Google Scholar 

  130. Onoe T, Tanaka Y, Ide K, Ishiyama K, Oshita A, Kobayashi T, et al. Attenuation of portal hypertension by continuous portal infusion of PGE1 and immunologic impact in adult-to-adult living-donor liver transplantation. Transplantation. 2013;95(12):1521–7.

    Article  CAS  Google Scholar 

  131. Zhou J, Chen J, Wei Q, Saeb-Parsy K, Xu X. The role of ischemia/reperfusion injury in early hepatic allograft dysfunction. Liver Transpl. 2020;26(8):1034–48.

    Article  Google Scholar 

  132. Wang Y, Wu S, Yu X, Zhou S, Ge M, Chi X, et al. Dexmedetomidine protects rat liver against ischemia-reperfusion injury partly by the alpha2A-adrenoceptor subtype and the mechanism is associated with the TLR4/NF-kappaB pathway. Int J Mol Sci. 2016;17(7):995.

    Article  Google Scholar 

  133. Chen Z, Ding T, Ma C-G. Dexmedetomidine (DEX) protects against hepatic ischemia/reperfusion (I/R) injury by suppressing inflammation and oxidative stress in NLRC5 deficient mice. Biochem Biophys Res Commun. 2017;493(2):1143–50.

    Article  CAS  Google Scholar 

  134. Ni C, Masters J, Zhu L, Yu W, Jiao Y, Yang Y, et al. Study design of the DAS-OLT trial: a randomized controlled trial to evaluate the impact of dexmedetomidine on early allograft dysfunction following liver transplantation. Trials. 2020;21(1):582.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajakumar, A., Velusamy, P., Kaliamoorthy, I. (2023). Assessment of Early Graft Function and Management of Early Graft Failure. In: Vohra, V., Gupta, N., Jolly, A.S., Bhalotra, S. (eds) Peri-operative Anesthetic Management in Liver Transplantation. Springer, Singapore. https://doi.org/10.1007/978-981-19-6045-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6045-1_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6044-4

  • Online ISBN: 978-981-19-6045-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics