Skip to main content

Fundamentals of Electrical Conductivity in Polymers

  • Chapter
  • First Online:
Multifunctional Epoxy Resins

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The fundamentals of electrical conductivity in polymers have been explored, more specifically, in conductive nanofilled-based polymers. First, the determination of the percolation threshold was investigated as it constitutes a crucial parameter to enable electrical networks throughout the polymer media. Furthermore, the electrical transport mechanisms of electrically conductive polymers were identified. Particularly, intrinsic conductivity of nanofiller, contact, and tunneling resistance was identified as the main transport mechanisms, being very affected by the nature of the insulating media as well as the geometry and interactions of the nanofillers. Furthermore, the electromechanical properties of conductive polymers have been also explored, where the tunneling transport mechanisms play a very prevalent role, leading to very high electrical sensitivities to mechanical strain. Temperature dependance of the electrical conductivity has been also investigated, and electro-thermal capabilities of electrically conductive polymers were determined, highlighting the high correlation between the electrical conductivity and the heating efficiency by Joule’s effect. Finally, some interesting applications of electrically conductive polymers were discussed where the development of strain and damage sensors and electro-thermal heaters for de-icing and self-healable systems were identified among the most interesting ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Senturia, S.D., Sheppard, N.F.: Dielectric analysis of thermoset cure. In: Epoxy Resins and Composites IV, pp. 1–47. Springer (1986)

    Google Scholar 

  2. Pitt, C., Barth, B., Godard, B.: Electrical properties of epoxy resins. IRE Trans. Compon. Parts. 4, 110–113 (1957)

    Article  Google Scholar 

  3. Aradhana, R., Mohanty, S., Nayak, S.K.: A review on epoxy-based electrically conductive adhesives. Int. J. Adhes. Adhes. 99, 102596 (2020)

    Article  CAS  Google Scholar 

  4. Yim, B., Kwon, Y., Oh, S.H., Kim, J., Shin, Y., Lee, S.H., Kim, J.: Characteristics of solderable electrically conductive adhesives (ECAs) for electronic packaging. Microelectron. Reliab. 52, 1165–1173 (2012)

    Article  CAS  Google Scholar 

  5. Ardanuy, M., Rodríguez-Perez, M.A., Algaba, I.: Electrical conductivity and mechanical properties of vapor-grown carbon nanofibers/trifunctional epoxy composites prepared by direct mixing. Compos. B Eng. 42, 675–681 (2011)

    Article  Google Scholar 

  6. Zhao, J., Hu, J., Jiao, D., Tosto, S.: Application of face centred cubic TiB powder as conductive filler for electrically conductive adhesives. Trans. Nonferrous Metals Soc. China. 24, 1773–1778 (2014)

    Article  CAS  Google Scholar 

  7. Tee, D.I., Mariatti, M., Azizan, A., See, C.H., Chong, K.F.: Effect of silane-based coupling agent on the properties of silver nanoparticles filled epoxy composites. Compos. Sci. Technol. 67, 2584–2591 (2007)

    Article  CAS  Google Scholar 

  8. Feng, Q., Yang, J., Fu, S., Mai, Y.: Synthesis of carbon nanotube/epoxy composite films with a high nanotube loading by a mixed-curing-agent assisted layer-by-layer method and their electrical conductivity. Carbon 48, 2057–2062 (2010)

    Article  CAS  Google Scholar 

  9. Sánchez-Romate, X.F., Artigas, J., Jiménez-Suárez, A., Sánchez, M., Güemes, A., Ureña, A.: Critical parameters of carbon nanotube reinforced composites for structural health monitoring applications: empirical results versus theoretical predictions. Compos. Sci. Technol. 171, 44–53 (2019)

    Google Scholar 

  10. Bryning, M.B., Islam, M.F., Kikkawa, J.M., Yodh, A.G.: Very low conductivity threshold in bulk isotropic single-walled carbon nanotube–epoxy composites. Adv. Mater. 17, 1186–1191 (2005)

    Article  CAS  Google Scholar 

  11. Sánchez-Romate, X.F., Sans, A., Jiménez-Suárez, A., Campo, M., Ureña, A., Prolongo, S.G.: Highly multifunctional GNP/epoxy nanocomposites: from strain-sensing to joule heating applications. Nanomaterials. 10, 2431 (2020)

    Google Scholar 

  12. Li, Y., Kanaji, N., Wang, X., Sato, T., Nakanishi, M., Kim, M., Michalski, J., Nelson, A.J., Farid, M., Basma, H., Patil, A., Toews, M.L., Liu, X., Rennard, S.I.: Prostaglandin E2 switches from a stimulator to an inhibitor of cell migration after epithelial-to-mesenchymal transition. Prostaglandins Other Lipid Mediat. 116–117, 1–9 (2015)

    Article  Google Scholar 

  13. Saad, G.R., Ezz, A.A., Ahmed, H.A.: Cure kinetics, thermal stability, and dielectric properties of epoxy/barium ferrite/polyaniline composites. Thermochim. Acta 599, 84–94 (2015)

    Article  CAS  Google Scholar 

  14. Martin-Gallego, M., López-Manchado, M.A., Calza, P., Roppolo, I., Sangermano, M.: Gold-functionalized graphene as conductive filler in UV-curable epoxy resin. J. Mater. Sci. 50, 605–610 (2015)

    Google Scholar 

  15. Krushnamurty, K., Rini, M., Srikanth, I., Ghosal, P., Das, A.P., Deepa, M., Subrahmanyam, C.: Conducting polymer coated graphene oxide reinforced C–epoxy composites for enhanced electrical conduction. Compos. A Appl. Sci. Manuf. 80, 237–243 (2016)

    Article  CAS  Google Scholar 

  16. Moriche, R., Sanchez, M., Jimenez-Suarez, A., Prolongo, S.G., Urena, A.: Strain monitoring mechanisms of sensors based on the addition of graphene nanoplatelets into an epoxy matrix. Compos. Sci. Technol. 123, 65–70 (2016)

    Article  CAS  Google Scholar 

  17. Wu, K.H., Ting, T.H., Wang, G.P., Ho, W.D., Shih, C.C.: Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites. Polym. Degrad. Stab. 93, 483–488 (2008)

    Article  CAS  Google Scholar 

  18. Sánchez-Romate, X.F., Jiménez-Suárez, A., Sánchez, M., Güemes, A., Ureña, A.: Novel approach to percolation threshold on electrical conductivity of carbon nanotube reinforced nanocomposites. Rsc Adv. 6, 43418–43428 (2016)

    Google Scholar 

  19. Milowska, K., Birowska, M., Majewski, J.A.: Mechanical and electrical properties of carbon nanotubes and graphene layers functionalized with amines. Diam. Relat. Mater. 23, 167–171 (2012)

    Article  CAS  Google Scholar 

  20. Li, J., Ma, P.C., Chow, W.S., To, C.K., Tang, B.Z., Kim, J.: Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv. Func. Mater. 17, 3207–3215 (2007)

    Article  CAS  Google Scholar 

  21. Kovacs, J.Z., Velagala, B.S., Schulte, K., Bauhofer, W.: Two percolation thresholds in carbon nanotube epoxy composites. Compos. Sci. Technol. 67, 922–928 (2007)

    Article  CAS  Google Scholar 

  22. Takeda, T., Shindo, Y., Kuronuma, Y., Narita, F.: Modeling and characterization of the electrical conductivity of carbon nanotube-based polymer composites. Polymer 52, 3852–3856 (2011)

    Article  CAS  Google Scholar 

  23. Kuronuma, Y., Takeda, T., Shindo, Y., Narita, F., Wei, Z.: Electrical resistance-based strain sensing in carbon nanotube/polymer composites under tension: analytical modeling and experiments. Compos. Sci. Technol. 72, 1678–1682 (2012)

    Article  CAS  Google Scholar 

  24. Sánchez, M., Moriche, R., Sánchez-Romate, X.F., Prolongo, S.G., Rams, J., Ureña, A.: Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: a deeper theoretical to experimental analysis. Compos. Sci. Technol. 181, 107697 (2019)

    Google Scholar 

  25. Oskouyi, A.B., Sundararaj, U., Mertiny, P.: Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets. Materials. 7, 2501–2521 (2014)

    Article  Google Scholar 

  26. Bao, W.S., Meguid, S.A., Zhu, Z.H., Meguid, M.J.: Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes. Nanotechnology 22, 485704 (2011)

    Article  CAS  Google Scholar 

  27. Bao, W.S., Meguid, S.A., Zhu, Z.H., Pan, Y., Weng, G.J.: A novel approach to predict the electrical conductivity of multifunctional nanocomposites. Mech. Mater. 46, 129–138 (2012)

    Article  Google Scholar 

  28. Jangam, S., Raja, S., Maheswar Gowd, B.U.: Influence of multiwall carbon nanotube alignment on vibration damping of nanocomposites. J. Reinf. Plast. Compos. 35, 617–627 (2016)

    Google Scholar 

  29. Moriche, R., Jiménez-Suárez, A., Sánchez, M., Prolongo, S.G., Ureña, A.: Sensitivity, influence of the strain rate and reversibility of GNPs based multiscale composite materials for high sensitive strain sensors. Compos. Sci. Technol

    Google Scholar 

  30. Sánchez-Romate, X.F., Moriche, R., Jiménez-Suárez, A., Sánchez, M., Prolongo, S.G., Ureña, A.: Sensitive response of GNP/epoxy coatings as strain sensors: analysis of tensile-compressive and reversible cyclic behavior. Smart Mater. Struct. 29, 065012 (2020)

    Google Scholar 

  31. Zhai, T., Li, D., Fei, G., Xia, H.: Piezoresistive and compression resistance relaxation behavior of water blown carbon nanotube/polyurethane composite foam. Compos. A Appl. Sci. Manuf. 72, 108–114 (2015)

    Article  CAS  Google Scholar 

  32. Wichmann, M.H.G., Buschhorn, S.T., Boeger, L., Adelung, R., Schulte, K.: Direction sensitive bending sensors based on multi-wall carbon nanotube/epoxy nanocomposites. Nanotechnology 19, 475503 (2008)

    Article  Google Scholar 

  33. Moriche, R., Sanchez, M., Prolongo, S.G., Jimenez-Suarez, A., Urena, A.: Reversible phenomena and failure localization in self-monitoring GNP/epoxy nanocomposites. Compos. Struct. 136, 101–105 (2016)

    Article  Google Scholar 

  34. Sánchez-Romate, X.F., Jiménez-Suárez, A., Campo, M., Ureña, A., Prolongo, S.G.: Electrical properties and strain sensing mechanisms in hybrid graphene nanoplatelet/carbon nanotube nanocomposites. Sensors. 21, 5530 (2021)

    Google Scholar 

  35. Tallman, T.N., Hassan, H.: A network-centric perspective on the microscale mechanisms of complex impedance in carbon nanofiber-modified epoxy. Compos. Sci. Technol. 181, 107669 (2019)

    Article  Google Scholar 

  36. Burke, P.J.: An RF circuit model for carbon nanotubes. IEEE Trans. Nanotechnol. 2, 55–58 (2003)

    Article  Google Scholar 

  37. Bosque, A.D., Sánchez-Romate, X.F., Sánchez, M., Ureña, A.: Ultrasensitive and highly stretchable sensors for human motion monitoring made of graphene reinforced polydimethylsiloxane: electromechanical and complex impedance sensing performance. Carbon. 192, 234–248 (2022)

    Google Scholar 

  38. Cardoso, P., Silva, J., Agostinho Moreira, J., Klosterman, D., van Hattum, F.W.J., Simoes, R., Lanceros-Mendez, S.: Temperature dependence of the electrical conductivity of vapor grown carbon nanofiber/epoxy composites with different filler dispersion levels. Phys. Lett. A. 376, 3290–3294 (2012)

    Google Scholar 

  39. Beloborodov, I.S., Lopatin, A.V., Vinokur, V.M., Efetov, K.B.: Granular electronic systems. Rev. Mod. Phys. 79, 469 (2007)

    Article  CAS  Google Scholar 

  40. Bower, D.I.: No title. An Introduction to Polymer Physics (2003)

    Google Scholar 

  41. Jović, N., Dudić, D., Montone, A., Antisari, M.V., Mitrić, M., Djoković, V.: Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites. Scr. Mater. 58, 846–849 (2008)

    Article  Google Scholar 

  42. Weng, W., Chen, G., Wu, D.: Transport properties of electrically conducting nylon 6/foliated graphite nanocomposites. Polymer 46, 6250–6257 (2005)

    Article  CAS  Google Scholar 

  43. Kim, B., Park, S., Bandaru, P.R.: Anomalous decrease of the specific heat capacity at the electrical and thermal conductivity percolation threshold in nanocomposites. Appl. Phys. Lett. 105, 253108 (2014)

    Article  Google Scholar 

  44. Jeong, Y.G., An, J.: UV-cured epoxy/graphene nanocomposite films: preparation, structure and electric heating performance. Polym. Int. 63, 1895–1901 (2014)

    Article  CAS  Google Scholar 

  45. Sangroniz, L., Sangroniz, A., Fernández, M., Etxeberria, A., Müller, A.J., Santamaria, A.: Elaboration and characterization of conductive polymer nanocomposites with potential use as electrically driven membranes. Polymers 11, 1180 (2019)

    Article  Google Scholar 

  46. Pelech, I., Kaczmarek, A., Pelech, R.: Current-voltage characteristics of the composites based on epoxy resin and carbon nanotubes. J. Nanomaterials 405345 (2015)

    Google Scholar 

  47. del Bosque, A., Sánchez-Romate, X.F., Sánchez, M., Ureña, A.: Flexible wearable sensors based in carbon nanotubes reinforced poly (ethylene glycol) diglycidyl ether (PEGDGE): analysis of strain sensitivity and proof of concept. Chemosensors. 9, 158 (2021)

    Google Scholar 

  48. Sánchez-Romate, XF., Moriche, R., Jiménez-Suárez, A., Sánchez, M., Prolongo, S.G., Güemes, A., Ureña, A.: Highly sensitive strain gauges with carbon nanotubes: from bulk nanocomposites to multifunctional coatings for damage sensing. Appl. Surf. Sci. 424, 213–221 (2017)

    Google Scholar 

  49. Thostenson, E.T., Chou, T.: Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing. Adv. Mater. 18, 2837–+ (2006)

    Google Scholar 

  50. Gao, L., Chou, T., Thostenson, E.T., Zhang, Z., Coulaud, M.: In situ sensing of impact damage in epoxy/glass fiber composites using percolating carbon nanotube networks. Carbon 49, 3382–3385 (2011)

    Article  CAS  Google Scholar 

  51. Tallman, T.N., Gungor, S., Wang, K.W., Bakis, C.E.: Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography. Smart Mater. Struct. 23, 045034 (2014)

    Article  CAS  Google Scholar 

  52. Tallman, T.N., Gungor, S., Wang, K.W., Bakis, C.E.: Damage detection via electrical impedance tomography in glass fiber/epoxy laminates with carbon black filler. Struct. Health Monit. 14, 100–109 (2015)

    Article  Google Scholar 

  53. Sánchez-Romate, X.F., Alvarado, A., Jiménez-Suárez, A., Prolongo, S.G.: Carbon nanotube reinforced poly (ε-caprolactone)/epoxy blends for superior mechanical and self-sensing performance in multiscale glass fiber composites. Polymers. 13, 3159 (2021)

    Google Scholar 

  54. Donati, G., De Nicola, A., Munaò, G., Byshkin, M., Vertuccio, L., Guadagno, L., Le Goff, R., Milano, G.: Simulation of self-heating process on the nanoscale: a multiscale approach for molecular models of nanocomposite materials. Nanoscale Adv. 2, 3164–3180 (2020)

    Article  CAS  Google Scholar 

  55. Xia, T., Zeng, D., Li, Z., Young, R.J., Vallés, C., Kinloch, I.A.: Electrically conductive GNP/epoxy composites for out-of-autoclave thermoset curing through Joule heating. Compos. Sci. Technol. 164, 304–312 (2018)

    Article  CAS  Google Scholar 

  56. Sung, P., Chang, S.: The adhesive bonding with buckypaper–carbon nanotube/epoxy composite adhesives cured by Joule heating. Carbon 91, 215–223 (2015)

    Article  CAS  Google Scholar 

  57. Redondo, O., Prolongo, S.G., Campo, M., Sbarufatti, C., Giglio, M.: Anti-icing and de-icing coatings based Joule’s heating of graphene nanoplatelets. Compos. Sci. Technol. 164, 65–73 (2018)

    Article  CAS  Google Scholar 

  58. Sánchez-Romate, X.F., Sans, A., Jiménez-Suárez, A., Prolongo, S.G.: The addition of graphene nanoplatelets into epoxy/polycaprolactone composites for autonomous self-healing activation by joule’s heating effect. Compos. Sci. Technol. 213, 108950 (2021)

    Google Scholar 

  59. Park, J.S., Kim, H.S., Thomas Hahn, H.: Healing behavior of a matrix crack on a carbon fiber/mendomer composite. Compos. Sci. Technol. 69, 1082–1087 (2009)

    Google Scholar 

  60. Sánchez-Romate, X.F., Gutiérrez, R., Cortés, A., Jiménez-Suárez, A., Prolongo, S.G.: Multifunctional coatings based on GNP/epoxy systems: strain sensing mechanisms and joule’s heating capabilities for deicing applications. Prog. Org. Coat. 167, 106829 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xoan F. Sánchez-Romate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sánchez-Romate, X.F. (2023). Fundamentals of Electrical Conductivity in Polymers. In: Hameed, N., Capricho, J.C., Salim, N., Thomas, S. (eds) Multifunctional Epoxy Resins. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-6038-3_12

Download citation

Publish with us

Policies and ethics