Skip to main content

Permeability and Mechanical Properties of Pervious Concrete Curb with Different Aggregate Sizes

  • Conference paper
  • First Online:
Proceedings of the 5th International Conference on Water Resources (ICWR) – Volume 1

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 293))

  • 236 Accesses

Abstract

Pervious concrete is an environmentally friendly material that can be a feasible option in solving urban drainage problems and mitigating climate change. This research aims to evaluate the mechanical and hydraulics properties of pervious concrete with different aggregate sizes and propose the acceptable aggregate size for road curb. Pervious concrete mixes are prepared with single-sized aggregates (4.75, 8, 12.5 and 16 mm) with constant aggregate cement and water-cement ratios. Furthermore, a series of tests were conducted in this study, such as compressive strength, porosity, and permeability. The experimental result showed that the size of coarse aggregate affects the strength and permeability of the specimens. The permeability and porosity decrease as the aggregate size increases. The smaller aggregate size is beneficial to increase the 28 days compressive strength of pervious concrete. Linear regression relationships were developed to establish relationships between porosity and compressive strength and porosity and permeability. The obtained result showed that the aggregate size of 8 mm performed better than the others in all assessments and could be applied on pervious concrete curb.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ACI. 522R-13 (2013) Report on pervious concrete. ACI Committee 522

    Google Scholar 

  2. American Society for Testing and Materials (2012) ASTM C1754 / C1754M-12, standard test method for density and void content of hardened pervious concrete, ASTM International, West Conshohocken, PA

    Google Scholar 

  3. British Standards Institution (2008) BS EN 12620:2002+A1. Aggregates for concrete. BSI, London

    Google Scholar 

  4. British Standards Institution (2013) BS EN 1097-6:2013—tests for mechanical and physical properties of aggregates. part 6: determination of particle density and water absorption. British Standards Institution, London

    Google Scholar 

  5. British Standards Institution (2009) Testing hardened concrete–Part 3: Compressive strength of test specimens. BS EN 12390-3, London

    Google Scholar 

  6. Abd Halim NH, Md Nor H, Jaya RP, Mohamed A, Wan Ibrahim MH, Ramli NI, Nazri FM (2018) Permeability and strength of porous concrete paving blocks at different sizes coarse aggregate. J Phys Conf Ser 1049(1). https://doi.org/10.1088/1742-6596/1049/1/012028

  7. ACI (2010) Report on pervious concrete. ACI Commitee 522, March 1–40. https://www.concrete.org/Portals/0/Files/PDF/Previews/522R-10web.pdf

  8. Bonicelli A, Giustozzi F, Crispino M, Borsa M (2015) Evaluating the effect of reinforcing fibres on pervious concrete volumetric and mechanical properties according to different compaction energies. Eur J Environ Civ Eng 19(2):184–198. https://doi.org/10.1080/19648189.2014.939308

    Article  Google Scholar 

  9. Bright Singh S, Murugan M (2020) Effect of aggregate size on properties of polypropylene and glass fibre-reinforced pervious concrete. Int J Pavement Eng 23(6):1–15. https://doi.org/10.1080/10298436.2020.1836562

    Article  CAS  Google Scholar 

  10. Chandrappa AK, Biligiri KP (2016) Comprehensive investigation of permeability characteristics of pervious concrete: a hydrodynamic approach. Constr Build Mater 123:627–637. https://doi.org/10.1016/j.conbuildmat.2016.07.035

    Article  CAS  Google Scholar 

  11. Chandrappa AK, Biligiri KP (2016) Pervious concrete as a sustainable pavement material – research findings and future prospects: a state-of-the-art review. Constr Build Mater 111:262–274. https://doi.org/10.1016/j.conbuildmat.2016.02.054

    Article  Google Scholar 

  12. Chang JJ, Yeih W, Chung TJ, Huang R (2016) Properties of pervious concrete made with electric arc furnace slag and alkali-activated slag cement. Constr Build Mater 109:34–40. https://doi.org/10.1016/j.conbuildmat.2016.01.049

    Article  CAS  Google Scholar 

  13. Deo O, Neithalath N (2011) Compressive response of pervious concretes proportioned for desired porosities. Constr Build Mater 25(11):4181–4189. https://doi.org/10.1016/j.conbuildmat.2011.04.055

    Article  Google Scholar 

  14. Despotovic J, Plavsic J, Stefanovic N, Pavlovic D (2005) Inefficiency of storm water inlets as a source of urban floods. Water Sci Technol 51(2):139–145. https://doi.org/10.2166/wst.2005.0041

    Article  CAS  Google Scholar 

  15. Gómez M, Recasens J, Russo B, Martínez-Gomariz E (2016) Assessment of inlet efficiency through a 3D simulation: numerical and experimental comparison. Water Sci Technol 74(8):1926–1935. https://doi.org/10.2166/wst.2016.326

  16. Guo JCY, MacKenzie KA, Mommandi A (2009) Design of street sump inlet. J Hydraul Eng 135(11):1000–1004. https://doi.org/10.1061/(asce)hy.1943-7900.0000094

    Article  Google Scholar 

  17. Hao X, Mu J, Shi H (2021) Experimental study on the inlet discharge capacity under different clogging conditions. Water (Switzerland) 13(6). https://doi.org/10.3390/w13060826

  18. Huang B, Wu H, Shu X, Burdette EG (2010) Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Constr Build Mater 24(5):818–823. https://doi.org/10.1016/j.conbuildmat.2009.10.025

    Article  Google Scholar 

  19. Hung VV, Seo SY, Kim HW, Lee GC (2021) Permeability and strength of pervious concrete according to aggregate size and blocking material. Sustainability (Switzerland) 13(1):1–13. https://doi.org/10.3390/su13010426

    Article  CAS  Google Scholar 

  20. Kia A, Wong HS, Cheeseman CR (2017) Clogging in permeable concrete: a review. J Environ Manage 193:221–233. https://doi.org/10.1016/j.jenvman.2017.02.018

    Article  Google Scholar 

  21. Kováč M, Sičáková A (2018) Pervious concrete as an environmental solution for pavements: focus on key properties. Environments 5(1):11. https://doi.org/10.3390/environments5010011

    Article  Google Scholar 

  22. Leon Raj J, Chockalingam T (2020) Strength and abrasion characteristics of pervious concrete. Road Mater Pavement Des 21(8):2180–2197. https://doi.org/10.1080/14680629.2019.1596828

    Article  Google Scholar 

  23. Li J, Zhang Y, Liu G, Peng X (2017) Preparation and performance evaluation of an innovative pervious concrete pavement. Constr Build Mater 138:479–485. https://doi.org/10.1016/j.conbuildmat.2017.01.137

    Article  Google Scholar 

  24. Li LG, Feng JJ, Zhu J, Chu SH, Kwan AKH (2021) Pervious concrete: effects of porosity on permeability and strength. Mag Concr Res 73(2):69–79. https://doi.org/10.1680/jmacr.19.00194

    Article  Google Scholar 

  25. Liu Y, Tang W, Singh RP (2019) Study on compressive strength and water permeability of steel slag-fly ash mixed permeable brick. Appl Sci (Switzerland) 9(8). https://doi.org/10.3390/app9081542

  26. Lori AR, Hassani A, Sedghi R (2019) Investigating the mechanical and hydraulic characteristics of pervious concrete containing copper slag as coarse aggregate. Constr Build Mater 197:130–142. https://doi.org/10.1016/j.conbuildmat.2018.11.230

    Article  Google Scholar 

  27. Mohammed BS, Liew MS, Alaloul WS, Khed VC, Hoong CY, Adamu M (2018) Properties of nano-silica modified pervious concrete. Case Stud Constr Mater 8:409–422. https://doi.org/10.1016/j.cscm.2018.03.009

    Article  Google Scholar 

  28. Mulyono T, Anisah (2019) Laboratory experiment: pervious concrete for permeable pavement, focus in compressive strength and permeability. IOP Conf Ser Earth Environ Sci 366(1). https://doi.org/10.1088/1755-1315/366/1/012019

  29. Neithalath N, Bentz D, Sumanasoorlya M (2010) Predicting the permeability of pervious concrete: advances in characterization of pore structure and transport properties. Concr Int 32(5):35–40

    Google Scholar 

  30. Ng CY, Narong AR, Zaman ABK, Mustaffa Z, Mohammed BS, Ean LW (2019) Properties of modified high permeable concrete with a crumb rubber. Open Civil Eng J 13(1):82–91. https://doi.org/10.2174/1874149501913010082

    Article  Google Scholar 

  31. Ngohpok C, Sata V, Satiennam T, Klungboonkrong P, Chindaprasirt P (2018) Mechanical properties, thermal conductivity, and sound absorption of pervious concrete containing recycled concrete and bottom ash aggregates. KSCE J Civ Eng 22(4):1369–1376. https://doi.org/10.1007/s12205-017-0144-6

    Article  Google Scholar 

  32. Nguyen DH, Sebaibi N, Boutouil M, Leleyter L, Baraud F (2014) A modified method for the design of pervious concrete mix. Constr Build Mater 73:271–282. https://doi.org/10.1016/j.conbuildmat.2014.09.088

    Article  Google Scholar 

  33. Obla KH (2010) Pervious concrete - an overview. Indian Concr J 84(8):9–18

    Google Scholar 

  34. Oni B, Xia J, Liu M (2020) Mechanical properties of pressure moulded fibre reinforced pervious concrete pavement brick. Case Stud Constr Mater 13:e00431. https://doi.org/10.1016/j.cscm.2020.e00431

    Article  Google Scholar 

  35. Patil AR, Darshan SC, Pradeepgouda PP, Vidyashree T, Chm G (2018) Influence of different size of aggregate and water cement ratio on pervious concrete 6(4):1090–1093

    Google Scholar 

  36. Sandoval GFB, Galobardes I, Schwantes-cezario N, Berenice M (2019) Correlation between permeability and porosity for pervious concrete Correlación de la permeabilidad y la porosidad para el concreto permeable (CoPe) 86(209):151–159

    Google Scholar 

  37. Schalla FE, Ashraf M, Barrett ME, Hodges BR (2017) Limitations of traditional capacity equations for long curb inlets. Transp Res Rec J Transp Res Board 2638(1):97–103. https://doi.org/10.3141/2638-11

    Article  Google Scholar 

  38. Shams A, Sarasua WA, Putman BJ, Davis WJ, Ogle JH (2020) Highway cross-sectional design and maintenance to minimize hydroplaning. J Transp Eng Part B Pavements 146(4):04020065. https://doi.org/10.1061/jpeodx.0000213

    Article  Google Scholar 

  39. Shukla BK, Gupta A (2020) Mix design and factors affecting strength of pervious concrete. In: Lecture notes in civil engineering, vol 38. Springer Singapore. https://doi.org/10.1007/978-981-13-7615-3_11

  40. Tennis P (n.d.) Pervious concrete pavements

    Google Scholar 

  41. Torres A, Aguayo F, Gaedicke C, Nerby P, Cavazos M, Nerby C (2020) Developing high strength pervious concrete mixtures with local materials. J Mater Sci Chem Eng 8:20–34. https://doi.org/10.4236/msce.2020.81003

    Article  CAS  Google Scholar 

  42. Van Vuuren BJ, Van Dijk M, Steyn W (2020) The interception capabilities of slotted drains as pavement surface drainage systems. J South African Inst Civil Eng 62(4):11–19. https://doi.org/10.17159/2309-8775/2020/V62N4A2

  43. Vilane BRT, Sabelo N (2016) The effect of aggregate size on the compressive strength of concrete. J Agric Sci Eng 2(6):66–69. http://www.aiscience.org/journal/jase%5Cnhttp://creativecommons.org/licenses/by/4.0/

    Google Scholar 

  44. Xie N, Akin M, Shi X (2019) Permeable concrete pavements: a review of environmental benefits and durability. J Clean Prod 210:1605–1621. https://doi.org/10.1016/j.jclepro.2018.11.134

    Article  Google Scholar 

  45. Yu F, Sun D, Wang J, Hu M (2019) Influence of aggregate size on compressive strength of pervious concrete. Constr Build Mater 209:463–475. https://doi.org/10.1016/j.conbuildmat.2019.03.140

    Article  Google Scholar 

  46. Zaman ABK, Mustaffa Z, Giri LDLA (2019) Infiltration rate of pervious concrete on street curb application. Int J Recent Technol Eng 8(2 Special Issue 2):86–90. https://doi.org/10.35940/ijrte.B1016.0782S219

  47. Zhong R, Leng Z, Sun PC (2018) Research and application of pervious concrete as a sustainable pavement material: a state-of-the-art and state-of-the-practice review. Constr Build Mater 183:544–553. https://doi.org/10.1016/j.conbuildmat.2018.06.131

  48. Zhong R, Wille K (2015) Material design and characterization of high performance pervious concrete. Constr Build Mater 98:51–60. https://doi.org/10.1016/j.conbuildmat.2015.08.027

    Article  Google Scholar 

Download references

Acknowledgements

The support provided by the Majlis Bandaraya Shah Alam (MBSA) and Universiti Teknologi Malaysia (UTM) in the form of a research grant of vote number R.J130000.7351.4B584 for this study is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. N. A. Lian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lian, C.N.A., Jamal, M.H., Ibrahim, Z. (2023). Permeability and Mechanical Properties of Pervious Concrete Curb with Different Aggregate Sizes. In: Harun, S., Othman, I.K., Jamal, M.H. (eds) Proceedings of the 5th International Conference on Water Resources (ICWR) – Volume 1. Lecture Notes in Civil Engineering, vol 293. Springer, Singapore. https://doi.org/10.1007/978-981-19-5947-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5947-9_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5946-2

  • Online ISBN: 978-981-19-5947-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics