Skip to main content

Magnetically Actuated Origami Structures for Untethered Optical Steering in Remote Set-up: Preliminary Designs and Characterisations

  • Chapter
  • First Online:
Deployable Multimodal Machine Intelligence

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

  • 494 Accesses

Abstract

Minimally invasive surgical procedures (MIS) are conducted in highly confined environments, through small incisions to introduce instruments into the body. Curating devices made for MIS is challenging, as high precision and accuracy are required. Optical module steering is like the ‘eyes’ overseeing the procedure. Here, this work explores various magnetically actuated origami structures, aiming to improve the foldability, degrees of freedom and workspace of optic steering. These origami structures are initially compact and can be deployed into various shapes and sizes. The structures are integrated with magnets to maximize the potential of their origami folds. The magnetically actuated origami structures promote an untethered control of these structures in restricted environments, reducing the invasiveness of the structures. Magnetically actuated structure panning and tilting, indirectly steering the laser beam pathway. The computational control of magnetic flux to actuate the structures also further enhances its beam steering capabilities, improving accuracy and precision. Henceforth, based on the conducted experiments, these origami structures have shown a positive outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DC:

Direct Current

DOF:

Degrees Of Freedom

EM:

Electromagnet

ePM:

External Permanent Magnets

iPM:

Internal Permanent Magnets

LED:

Light Emitting Diode

MAE:

Maximum Absolute Error

MIS:

Minimally Invasive Surgeries

Nd:

Neodymium

PM:

Permanent Magnets

RMSE:

Root Mean Square Error

RMSE:

\(\sqrt{\frac{{\sum }_{i=0}^{n}{({P}_{i}-{O}_{i})}^{2}}{n},}\) Pi = Predictedi, Oi = Observedi, n = Number of Data Points

% Stability:

\(\frac{Deflection}{Initial\, Height\, from \,Surface }*100\)

% Reversibility:

\(\% Reversibility= \frac{Final \,Diameter- {Diameter}_{State}}{{Diameter}_{State}-Initial\, Diameter}*100\)

References

  • Acemoglu A, Deshpande N, Mattos LS (2018) Towards a magnetically-actuated laser scanner for endoscopic microsurgeries. J Med Robot Res 3(02):1840004

    Article  Google Scholar 

  • Ahmed AR, Gauntlett OC, Camci-Unal G (2020) Origami approaches for biomedical applications. ACS Omega 2020/12/27. https://doi.org/10.1021/acsomega.0c05275

  • Ahn Y, Lee U (2018) Use of lasers in minimally invasive spine surgery. Expert Rev Med Devices 15(6):423–433

    Article  Google Scholar 

  • Axinte D, Guo Y, Liao Z, Shih AJ, M’Saoubi R, Sugita N (2019) Machining of biocompatible materials—recent advances. CIRP Ann 68(2):629–652

    Article  Google Scholar 

  • Babilas P et al (2006) In vitro and in vivo comparison of two different light sources for topical photodynamic therapy. Br J Dermatol 154(4):712–718. https://doi.org/10.1111/j.1365-2133.2006.07143.x

    Article  Google Scholar 

  • Boppart S, Deutsch T, Rattner D (1999) Optical imaging technology in minimally invasive surgery. Surg Endosc 13(7):718–722

    Article  Google Scholar 

  • Brancaleon L, Moseley H (2002) Laser and non-laser light sources for photodynamic therapy. Lasers Med Sci 17(3):173–186. https://doi.org/10.1007/s101030200027

    Article  Google Scholar 

  • Castro CA et al (2013) A wireless robot for networked laparoscopy. IEEE Trans Biomed Eng 60(4):930–936. https://doi.org/10.1109/TBME.2012.2232926

    Article  Google Scholar 

  • Castro CA et al (2012) MARVEL: a wireless miniature anchored robotic videoscope for expedited laparoscopy. In: 2012 IEEE International conference on robotics and automation, 14–18 May 2012, pp 2926–2931. https://doi.org/10.1109/ICRA.2012.6225118

  • Charreyron SL, Gabbi E, Boehler Q, Becker M, Nelson BJ (2018) A magnetically steered endolaser probe for automated panretinal photocoagulation. IEEE Robot Autom Lett 4(2):xvii–xxiii

    Google Scholar 

  • Chung J et al (2021) Triangulated cylinder origami-based piezoelectric/triboelectric hybrid generator to harvest coupled axial and rotational motion. Research 2021

    Google Scholar 

  • Fichera L (2021) Bringing the light inside the body to perform better surgery. Sci Robot 6(50)

    Google Scholar 

  • Flora Mechentel DW, Arya M, Case Bradford S, Lisman D, Eric Kelso JDS, Freebury G, Iskra A, Swain A (2020) Starshade technology development activity milestone 5A: verify petal pre-launch accuracy. [Online]. https://exoplanets.nasa.gov/internal_resources/1683/

  • Fuchs K (2002) Minimally invasive surgery. Endoscopy 34(02):154–159

    Article  Google Scholar 

  • Gabler F, Karnaushenko DD, Karnaushenko D, Schmidt OG (2019) Magnetic origami creates high performance micro devices. Nat Commun 10(1):3013, 2019/07/08. https://doi.org/10.1038/s41467-019-10947-x

  • Garbin N, Slawinski PR, Aiello G, Karraz C, Valdastri P (2016) Laparoscopic camera based on an orthogonal magnet arrangement. IEEE Robot Autom Lett 1:924–929

    Article  Google Scholar 

  • Goel RK, Kaouk JH (2007) Optical coherence tomography: the past, present and future. J Robot Surg 1(3):179–184

    Article  Google Scholar 

  • Hardy LA et al (2017) Rapid sealing of porcine renal blood vessels, ex vivo, using a high power, 1470-nm laser, and laparoscopic prototype. J Biomed Opt 22(5):058002

    Article  Google Scholar 

  • He M et al (2017) Biocompatible and biodegradable bioplastics constructed from chitin via a “green” pathway for bone repair. ACS Sustain Chem Eng 5(10):9126–9135

    Article  Google Scholar 

  • Helmus MN, Gibbons DF, Cebon D (2008) Biocompatibility: meeting a key functional requirement of next-generation medical devices. Toxicol Pathol 36(1):70–80

    Article  Google Scholar 

  • Herbert R, Kim J-H, Kim YS, Lee HM, Yeo W-H (2018) Soft material-enabled, flexible hybrid electronics for medicine, healthcare, and human-machine interfaces. Materials 11(2):187

    Article  Google Scholar 

  • Hu T, Allen PK, Hogle NJ, Fowler DL (2008) Insertable surgical imaging device with pan, tilt, zoom, and lighting. In: 2008 IEEE International conference on robotics and automation, 19–23 May 2008, pp 2948–2953. https://doi.org/10.1109/ROBOT.2008.4543657

  • Hu W, Lum GZ, Mastrangeli M, Sitti M (2018) Small-scale soft-bodied robot with multimodal locomotion. Nature 554(7690):81–85

    Google Scholar 

  • Jaffray B (2005) Minimally invasive surgery. Arch Dis Child 90(5):537–542

    Article  Google Scholar 

  • Johnson M et al (2017) Fabricating biomedical origami: a state-of-the-art review. Int J Comput Assist Radiol Surg 12(11):2023–2032. https://doi.org/10.1007/s11548-017-1545-1

    Article  Google Scholar 

  • Kawashima K, Kanno T, Tadano K (2019) Robots in laparoscopic surgery: current and future status. BMC Biomed Eng 1(1):1–6

    Article  Google Scholar 

  • Kercher E, Zhang K, Waguespack M, Lang R, Olmos A, Spring B (2020) High-power light-emitting diode array design and assembly for practical photodynamic therapy research. J Biomed Opt 25(6):063811 [Online]. https://doi.org/10.1117/1.JBO.25.6.063811

  • Kim J, Lee D-Y, Kim S-R, Cho K-J (2015) A self-deployable origami structure with locking mechanism induced by buckling effect. In: 2015 IEEE International conference on robotics and automation (ICRA). IEEE, pp 3166–3171

    Google Scholar 

  • Kim S-J, Lee D-Y, Jung G-P, Cho K-J (2018a) An origami, self-locking robotic arm that can be folded flat. Sci Robot 3(16)

    Google Scholar 

  • Kim J-J et al (2018b) Large-field-of-view visualization utilizing multiple miniaturized cameras for laparoscopic surgery. Micromachines (Basel) 9(9):431. https://doi.org/10.3390/mi9090431

    Article  Google Scholar 

  • Kundrat D et al (2021) Preclinical performance evaluation of a robotic endoscope for non-contact laser surgery. Ann Biomed Eng 49(2):585–600

    Article  Google Scholar 

  • Lei Y, Sheng Z, Zhang J, Liu J, Lv W, Hou X (2020) Building magnetoresponsive composite elastomers for bionic locomotion applications. J Bionic Eng 17:405–420

    Google Scholar 

  • Li N, Yazdanpanah AR, Mancini GJ, Tan J (2017) Initial design and results of an untethered insertable laparoscopic robotic surgical camera system. In: 2017 IEEE International conference on robotics and biomimetics (ROBIO), 5–8 Dec 2017, pp 959–964. https://doi.org/10.1109/ROBIO.2017.8324541

  • Li N, Mancini GJ, Tan J (2019) A noninvasive approach to recovering the lost force feedback for a robotic-assisted insertable laparoscopic surgical camera. In: 2019 International conference on robotics and automation (ICRA), 20–24 May 2019, pp 1521–1526. https://doi.org/10.1109/ICRA.2019.8793640

  • Lim HR, Kim HS, Qazi R, Kwon YT, Jeong JW, Yeo WH (2020) Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater 32(15):1901924

    Article  Google Scholar 

  • Liu X, Mancini GJ, Guan Y, Tan J (2016) Design of a magnetic actuated fully insertable robotic camera system for single-incision laparoscopic surgery. IEEE/ASME Trans Mechatron 21(4):1966–1976. https://doi.org/10.1109/TMECH.2015.2506148

    Article  Google Scholar 

  • Liu X, Abdolmalaki RY, Mancini GJ, Tan J (2017) Optical design of an in vivo laparoscopic lighting system. J Biomed Opt 22(12):1–15. https://doi.org/10.1117/1.Jbo.22.12.125003

    Article  Google Scholar 

  • Liu X, Abdolmalaki RY, Zuo T, Guan Y, Mancini GJ, Tan J (2018) Transformable in vivo robotic laparoscopic camera with optimized illumination system for single-port access surgery: initial prototype. IEEE/ASME Trans Mechatron 23(4):1585–1596. https://doi.org/10.1109/TMECH.2018.2840845

    Article  Google Scholar 

  • Manan Arya DW, Steeves J, Lisman D, Willems P, Case Bradford S, Kelso E, Neff K, Beidleman N, David Stienmier J, Freebury G, Tomchek A, Thomas T, Hazelton C, Butler K, Kamron Medina MP, Adams L, Hepper D, Turse D. Starshade technology development activity milestone 7C: demonstration of deployment accuracy of the Starshade inner disk subsystem

    Google Scholar 

  • Mattos LS, Deshpande N, Barresi G, Guastini L, Peretti G (2014) A novel computerized surgeon–machine interface for robot-assisted laser phonomicrosurgery. Laryngoscope 124(8):1887–1894

    Article  Google Scholar 

  • Miyashita S, Guitron S, Yoshida K, Li S, Damian DD, Rus D (2016) Ingestible, controllable, and degradable origami robot for patching stomach wounds. In: 2016 IEEE International conference on robotics and automation (ICRA). IEEE, pp 909–916

    Google Scholar 

  • Nicholson M, Gonenc B (2020) Hooked surgery camera, ed: Google Patents

    Google Scholar 

  • Novelino LS, Ze Q, Wu S, Paulino GH, Zhao R (2020) Untethered control of functional origami microrobots with distributed actuation. Proc Natl Acad Sci

    Google Scholar 

  • Philipose KJ, Sinha B (1994) Laparoscopic surgery. Med J Armed Forces India 50(2):137–143. https://doi.org/10.1016/S0377-1237(17)31019-5

    Article  Google Scholar 

  • Platt SR, Hawks JA, Rentschler ME (2009) Vision and task assistance using modular wireless in vivo surgical robots. IEEE Trans Biomed Eng 56(6):1700–1710. https://doi.org/10.1109/TBME.2009.2014741

    Article  Google Scholar 

  • Randall CL, Gultepe E, Gracias DH (2012) Self-folding devices and materials for biomedical applications. Trends Biotechnol 30(3):138–146. https://doi.org/10.1016/j.tibtech.2011.06.013

    Article  Google Scholar 

  • Renevier R, Tamadazte B, Rabenorosoa K, Tavernier L, Andreff N (2016) Endoscopic laser surgery: design, modeling, and control. IEEE/ASME Trans Mechatron 22(1):99–106

    Article  Google Scholar 

  • Robinson T, Stiegmann G (2004) Minimally invasive surgery. Endoscopy 36(01):48–51

    Article  Google Scholar 

  • Russo S (2020) Smart composites and hybrid soft-foldable technologies for minimally invasive surgical robots. In: Handbook of robotic and image-guided surgery. Elsevier, pp 323–340

    Google Scholar 

  • Sankaranarayanan G, Resapu RR, Jones DB, Schwaitzberg S, De S (2013) Common uses and cited complications of energy in surgery. Surg Endosc 27(9):3056–3072

    Article  Google Scholar 

  • Schenk H et al (2000) Large deflection micromechanical scanning mirrors for linear scans and pattern generation. IEEE J Sel Top Quantum Electron 6(5):715–722

    Article  Google Scholar 

  • Schenk M, Viquerat AD, Seffen KA, Guest SD (2014) Review of inflatable booms for deployable space structures: packing and rigidization. J Spacecr Rocket 51(3):762–778

    Article  Google Scholar 

  • Schwaitzberg SD (2001) Imaging systems in minimally invasive surgery. In: Seminars in laparoscopic surgery, vol 8, no 1. Sage Publications Sage CA, Thousand Oaks, CA, pp 3–11

    Google Scholar 

  • Simi M, Sardi G, Valdastri P, Menciassi A, Dario P (2011) Magnetic levitation camera robot for endoscopic surgery. In: 2011 IEEE International conference on robotics and automation, 9–13 May 2011, pp 5279–5284. https://doi.org/10.1109/ICRA.2011.5980075

  • Simi M et al (2013) Magnetically activated stereoscopic vision system for laparoendoscopic single-site surgery. IEEE/ASME Trans Mechatron 18(3):1140–1151. https://doi.org/10.1109/TMECH.2012.2198830

    Article  Google Scholar 

  • Space Origami: make your own Starshade. https://www.jpl.nasa.gov/edu/learn/project/space-origami-make-your-own-starshade/

  • Steck D, Qu J, Kordmahale SB, Tscharnuter D, Muliana A, Kameoka J (2019) Mechanical responses of Ecoflex silicone rubber: compressible and incompressible behaviors. J Appl Polym Sci 136(5):47025

    Article  Google Scholar 

  • Tendick F, Sastry SS, Fearing RS, Cohn M (1998) Applications of micromechatronics in minimally invasive surgery. IEEE/ASME Trans Mechatron 3(1):34–42

    Article  Google Scholar 

  • Terry BS, Mills ZC, Schoen JA, Rentschler ME (2012) Single-port-access surgery with a novel magnet camera system. IEEE Trans Biomed Eng 59(4):1187–1193. https://doi.org/10.1109/TBME.2012.2187292

    Article  Google Scholar 

  • Wang Y, Lee K (2017) 3D-printed semi-soft mechanisms inspired by origami twisted tower. In: 2017 NASA/ESA conference on adaptive hardware and systems (AHS). IEEE, pp 161–166

    Google Scholar 

  • Watras AJ et al (2020) Large-field-of-view visualization with small blind spots utilizing tilted micro-camera array for laparoscopic surgery. Micromachines (Basel) 11(5):488. https://doi.org/10.3390/mi11050488

    Article  Google Scholar 

  • Wu S, Hu W, Ze Q, Sitti M, Zhao R (2020) Multifunctional magnetic soft composites: a review. Multifunct Mater

    Google Scholar 

  • Yazdanpanah Abdolmalaki R, Liu X, Tan J (2017) Modeling and analysis of a laparoscopic camera's interaction with abdomen tissue, pp 4227–4232

    Google Scholar 

  • Yazdanpanah AR, Liu X, Li N, Tan J (2017) A novel laparoscopic camera robot with in-vivo lens cleaning and debris prevention modules. In: 2017 IEEE/RSJ International conference on intelligent robots and systems (IROS), 24–28 Sept 2017, pp 3669–3674. https://doi.org/10.1109/IROS.2017.8206212

  • York PA, Peña R, Kent D, Wood RJ (2021) Microrobotic laser steering for minimally invasive surgery. Sci Robot 6(50)

    Google Scholar 

  • Yung KL, Cheung JLK, Chung SW, Singh S, Yeung CK (2017) A single-port robotic platform for laparoscopic surgery with a large central channel for additional instrument. Ann Biomed Eng 45(9):2211–2221. https://doi.org/10.1007/s10439-017-1865-x

    Article  Google Scholar 

  • Zhai Z, Wang Y, Jiang H (2018) Origami, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness. Proc Natl Acad Sci 115(9):2032–2037

    Google Scholar 

  • Zhai Z, Wang Y, Lin K, Wu L, Jiang H (2020) In situ stiffness manipulation using elegant curved origami. Sci Adv 6(47):eabe2000. https://doi.org/10.1126/sciadv.abe2000

  • Zhao M, Vrielink TJO, Kogkas AA, Runciman MS, Elson DS, Mylonas GP (2020) LaryngoTORS: a novel cable-driven parallel robotic system for transoral laser phonosurgery. IEEE Robot Autom Lett 5(2):1516–1523

    Article  Google Scholar 

  • Zheng Q, Shi B, Li Z, Wang ZL (2017) Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv Sci 4(7):1700029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Ren .

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 5734 kb)

Appendices: Background Survey on Optical Component Steering Devices

Appendices: Background Survey on Optical Component Steering Devices

See Tables 12.S1 and 12.S2.

Table 12.S1 Survey on laparoscopic camera
Table 12.S2 Survey on laser-assisted devices

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ong, L.S.J., Ren, H. (2023). Magnetically Actuated Origami Structures for Untethered Optical Steering in Remote Set-up: Preliminary Designs and Characterisations. In: Deployable Multimodal Machine Intelligence. Lecture Notes in Bioengineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-5932-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5932-5_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5931-8

  • Online ISBN: 978-981-19-5932-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics