Skip to main content

Trichomics: Trichomes as Natural Chemical Factories

  • Chapter
  • First Online:
Phytochemical Genomics
  • 765 Accesses

Abstract

Trichomes are unicellular or multicellular epidermal extensions on the aerial parts of the plants. They provide protection against various environmental and biotic stresses like UV radiation, pathogen attack, and herbivory. However, the most significant role of trichomes is their ability to produce and accumulate large quantities of diverse plant metabolites. The remarkable bioproductivity of trichomes marks them as ‘natural chemical factories’ which are known to produce all groups of plant secondary metabolites (phytochemicals) like terpenoids, phenolics, methyl ketones O-acyl sugars, and defensive proteins. All these metabolites are of enormous significance not just for plant growth but also for humans as they find application in therapeutics, food, and cosmetic industries. In the wake of high demand of these metabolites, the research on trichomes has accelerated and the ‘omics exploration’ has facilitated the study of trichomes in diverse plant species which was otherwise restricted to few model plants. But the knowledge about transcriptional control and metabolic network underlying the high productivity of trichomes, development of trichomes, and their diversity is still in its infancy stage. These research gaps need to be addressed so that production machinery of trichomes can be tailored to favor the plant growth and also for the production of industrially important phytochemicals. The better understanding of these processes will also aid in mimicking the pathway in simple organisms like yeast for the production of these valuable phytochemicals. The present chapter provides up-to-date information on the role of trichomes as natural cell factories. It summarizes the current status of research made in this field and also highlights the unexploited areas of trichome research. The involvement of high-throughput techniques in the field is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams S, Kunz B, Weidenbörner M (1996) Mycelial deformations of Cladosporium herbarum due to the application of eugenol or carvacrol. J Essent Oil Res 8(5):535–540

    Article  CAS  Google Scholar 

  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LDA (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol 63:637–661

    Article  CAS  Google Scholar 

  • Ainsworth EA (2017) Understanding and improving global crop response to ozone pollution. Plant J 90:886–897

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  Google Scholar 

  • An L, Zhou Z, Yan A, Gan Y (2011) Progress on trichome development regulated by phytohormone signaling. Plant Signal Behav 6:1959–1962

    Article  CAS  Google Scholar 

  • Antonious GF (2001) Production and quantification of methyl ketones in wild tomato accessions. J Environ Sci Health B 36(6):835–848

    Article  CAS  Google Scholar 

  • Appel HM, Cocroft RB (2014) Plants respond to leaf vibrations caused by insect herbivore 348 chewing. Oecologia 175(4):1257–1266. https://doi.org/10.1007/s00442-014-2995-6

    Article  CAS  Google Scholar 

  • Armstrong-Cho C, Gossen B (2005) Impact of glandular hair exudates on infection of chickpea by Ascochyta rabiei. Can J Bot 83:22–27

    Article  Google Scholar 

  • Beale MH, Birkett MA, Bruce Toby JA, Keith C, Field LM, Huttly AK, Martin JL, Parker R, Phillips AL, Pichett JA, Prosser IM, Shewry PR, Smart LE, Wadhams LJ, Woodcock CM, Zhang Y (2006) Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc Natl Acad Sci U S A 103(27):10509–10513

    Article  CAS  Google Scholar 

  • Ben-Israel IY, Geng AMB, Bhuiyan N, Auldridge M, Nguyen T, Schauvinhold I, Noel JP, Pichersky E, Fridman E (2009) Multiple biochemical and morphological factors underlie the production of Methylketones in tomato trichomes. Plant Physiol 151(4):1952–1964

    Article  CAS  Google Scholar 

  • Besumbes O, Sauret-Güeto S, Phillips MA, Imperial S, Rodíguez-Concepción BA (2004) Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol. Biotechnol Bioeng 88(2):168–175

    Article  CAS  Google Scholar 

  • Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schütz S, Both MTJ, Haring MA, Schuurink R (2009) The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol 151(2):925–935

    Article  CAS  Google Scholar 

  • Bleeker PM, Diergaarde PL, Ament K, Schütz S, Johne B, Dijkink J, Hiemstra H, Gelder R, Both MTJ, Sabelis MW, Haring MA, Schuurink RC (2011) Tomato-produced 7-epizingiberene and R-Curcumene act as repellents to whiteflies. Phytochemistry 72(1):68–73

    Article  CAS  Google Scholar 

  • Bleeker PM, Mirabella R, Diergaarde PJ, Vandoorn A (2012) Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc Natl AcadSci 109(49):20124–20129

    Article  CAS  Google Scholar 

  • Caniard A, Zerbe P, Legrand S, Cohade A, Valot N, Magnard JL, Bohlmann J, Legendre L (2012) Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L.) and their relevance for perfume manufacture. BMC Plant Biol 12:119. https://doi.org/10.1186/1471-2229-12-119

    Article  CAS  Google Scholar 

  • Celedon JM, Whitehill JGA, Madilao LL, Bohlmann J (2020) Gymnosperm glandular trichomes: expanded dimensions of the conifer terpenoid defense system. Sci Rep 10:12464. https://doi.org/10.1038/s41598-020-69373-5

    Article  CAS  Google Scholar 

  • Chatzivasileiadis E, Sabelis M (1997) Toxicity of methyl ketones from tomato trichomes to Tetranychus urticae Koch. Exp Appl Acarol 21:473–484

    Article  CAS  Google Scholar 

  • Chauhan RS, Kaul MK, Shahi AK, Kumar A, Ram G, Tawa A (2009) Chemical composition of essential oils in Mentha spicata L. accession [IIIM(J)26] from North-West Himalayan Region, India. Ind Crop Prod 29(2):654–656

    Article  CAS  Google Scholar 

  • Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J Cell Mol Biol 66(1):212–229

    Article  CAS  Google Scholar 

  • Cho K, Tiwari S, Agrawal SB, Torres NL, Agrawal M, Sarkar A, Shibato J, Agrawal GK, Kubo A, Rakwal R (2011) Tropospheric ozone and plants: absorption, responses, and consequences. Rev Environ Contam Toxicol 212:61–111

    CAS  Google Scholar 

  • Choi YE, Lim S, Kim HJ, Han JY, Lee MH, Yang Y, Kim JA, Kim YS (2012) Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes. Plant J Cell MolBiol 70(3):480–491

    Article  CAS  Google Scholar 

  • Ciriaková A (2009) Heavy metals in the vascular plants of Tatra mountains. Oecologia Mont 18(1–2):23–26

    Google Scholar 

  • Croteau RB, Davis EM, Ringer KL, Wildung MR (2005) (−)-Menthol biosynthesis and molecular genetics. Naturwissenschaften 92(12):562–577

    Article  CAS  Google Scholar 

  • Czechowski T, Rinaldi MA, Famodimu MT, Van Veelen M, Larson TR, Winzer T, Graham IA (2019) Flavonoid versus artemisinin anti-malarial activity in Artemisia annua whole-leaf extracts. Front Plant Sci 10:984

    Article  Google Scholar 

  • Dayan FE, Duke SO (2003) Trichomes and root hairs: natural pesticide factories. Pestic Outlook 14(4):175–178

    Article  Google Scholar 

  • Dauqan EMA, Abdullah A (2017) Medicinal and functional values of thyme (Thymus Vulgaris L.) herb. J Appl Biol Biotechnol 5(2):17–22

    CAS  Google Scholar 

  • De Moraes C, Lewis WJ, Paré PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Article  Google Scholar 

  • Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70(15):1621–1637

    Article  CAS  Google Scholar 

  • Demetzos C, Katerinopoulos H, Kouvarakis A, Stratigakis N, Loukis A, Ekonomakis C, Spiliotis V, Tsaknis J (1997) Composition and antimicrobial activity of the essential oil of Cistus creticus Subsp. Eriocephalus. Planta Medica 63(05):477–479

    Article  CAS  Google Scholar 

  • Demetzos C, Dimas K, Hatziantoniou S, Anastasaki T, Angelopoulou D (2001) Cytotoxic and anti-inflammatory activity of labdane and cis-clerodane type diterpenes. Planta Med 67(07):614–618

    Article  CAS  Google Scholar 

  • Deschamps C, Gang D, Dudareva N, Simon JE (2006) Developmental regulation of phenylpropanoid biosynthesis in leaves and glandular trichomes of basil (Ocimum basilicum L.). Int J Plant Sci 167(3):447–454

    Article  CAS  Google Scholar 

  • Dicke M, Sabelis MW (1987) How plants obtain predatory mites as bodyguards. Neth J Zool 38(2–4):148–165

    Article  Google Scholar 

  • Dimock MB, Kennedy GG (1983) The role of glandular trichomes in the resistance of Lycopersicon hirsutum f. glabratum to Heliothis zea. Entomol Exp Appl Ent 33(3):263–268

    Article  Google Scholar 

  • Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl AcadSci 102(3):933–938

    Article  CAS  Google Scholar 

  • Eigenbrode SD, Trumble JT, Millar JG, White KK (1994) Topical toxicity of tomato sesquiterpenes to the beet armyworm and the role of these compounds in resistance derived from an accession of Lycopersicon hirsutum f. typicum. J Agric Food Chem 42(3):807–810

    Article  CAS  Google Scholar 

  • Eyres G, Dufour JP (2009) Hop essential oil: analysis, chemical composition and odor characteristics. In: Beer in health and disease prevention. Academic Press, pp 239–254

    Chapter  Google Scholar 

  • Fahn A (2000) Structure and function of secretory cells. In: Advances in botanical research. Academic Press, pp 37–75

    Google Scholar 

  • Falara V, Akhtar TA, Nguyen TTH, Spyropoulou EA, Bleerker PM, Schauvinhold I, Matsuba Y, Bonini ME, Schilmiller AL, Last RL, Schuurink RC, Pichersky E (2011) The tomato terpene synthase gene family. Plant Physiol 157(2):770–789

    Article  CAS  Google Scholar 

  • Fambrini M, Pugliesi C (2019) The dynamic genetic-hormonal regulatory network controlling the trichome development in leaves. Plants Basel Switz 8(8):E253

    Google Scholar 

  • Fan P, Miller AM, Schilmiller AL, Liu X, Ofner I, Jones AD, Zamir D, Last RL (2016) In vitro reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic network. Proc Natl Acad Sci 113:E239–E248

    Article  CAS  Google Scholar 

  • Fan P, Miller AM, Liu X, Jones AD, Last RL (2017) Evolution of a flipped pathway creates metabolic innovation in tomato trichomes through BAHD enzyme promiscuity. Nat Commun 8:2080

    Article  Google Scholar 

  • Ferrer J-L, Austin MB, Stewart C, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46(3):356–370

    Article  CAS  Google Scholar 

  • Foley RC, Singh KB (1994) Isolation of a Vicia faba metallothionein-like gene: expression in foliar trichomes. Plant MolBiol 26(1):435–444

    CAS  Google Scholar 

  • Fridman E, Wang J, Iijima Y, Froehlich JE, Gang DR, Ohlrogge J, Pichersky E (2005) Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynthesis of methyl ketones. Plant Cell 17(4):1252–1267

    Article  CAS  Google Scholar 

  • Frija LMT, Frade RFM, Afonso CAM (2011) Isolation, chemical, and biotransformation routes of labdane-type diterpenes. Chem Rev 111(8):4418–4452

    Article  CAS  Google Scholar 

  • Gibson RW, Pickett JA (1983) Wild potato repels aphids by release of aphid alarm pheromone. Nature 302(5909):608–609

    Article  CAS  Google Scholar 

  • Glas J, Schimmel BCJ, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR (2012) Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci 13(12):17077–17103

    Article  CAS  Google Scholar 

  • Goffreda JC, Mutschler MA, Avé DA, Tingey WM, Steffens JC (1989) Aphid deterrence by glucose esters in glandular trichome exudate of the wild tomato, Lycopersicon pennellii. J Chem Ecol 15(7):2135–2147

    Article  CAS  Google Scholar 

  • Harada E, Choi YE (2008) Investigation of metal exudates from tobacco glandular trichomes under heavy metal stresses using a variable pressure scanning electron microscopy system. Plant Biotechnol 25:407–411

    Article  CAS  Google Scholar 

  • Hemmerlin A, Harwood JL, Bach TJ (2012) A raison d’être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res 51(2):95–148

    Article  CAS  Google Scholar 

  • Herrmann KM (1995) The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiol 107(1):7–12

    Article  CAS  Google Scholar 

  • Hoeffler JF, Hemmerlin A, Grosdemange-Billard C, Bach TJ, Rohmer M (2002) Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate. Biochem J 366(Pt 2):573–583

    Article  CAS  Google Scholar 

  • Huchelmann A, Boutry M, Hachez C (2017) Plant glandular trichomes: natural cell factories of high biotechnological interest. Plant Physiol 175(1):6–22

    Article  CAS  Google Scholar 

  • Hülskamp M (2004) Plant trichomes: a model for cell differentiation. Nat Rev Mol Cell Biol 5:471–480

    Article  Google Scholar 

  • Imboden L, Afton D, Trail F (2018) Surface interactions of Fusarium graminearum on barley. Mol Plant Pathol 19(6):1332–1342

    Article  CAS  Google Scholar 

  • Jiang CH, Sun TL, Xiang DX, Wei SS, Li WQ (2018) Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.). Front Pharmacol 9:530

    Article  Google Scholar 

  • Kamatou GP, Vermaak I, Viljoen AM, Lawrence BM (2013) Menthol: a simple monoterpene with remarkable biological properties. Phytochemistry 96:15–25

    Article  CAS  Google Scholar 

  • Kang JH, Shi F, Jones AD, Marks MD, Howe GA (2010) Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. J Exp Bot 61(4):1053–1064

    Article  CAS  Google Scholar 

  • Kanagendran A, Pazouki L, Li S, Liu B, Kännaste A, Niinemets Ü (2018) Ozone-triggered surface uptake and stress volatile emissions in Nicotiana tabacum ‘Wisconsin’. J Exp Bot 69(3):681–697

    Article  CAS  Google Scholar 

  • Kant MR, Ament K, Sabelis MW, Haring MA, Schuurink RC (2004) Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol 135(1):483–495

    Article  CAS  Google Scholar 

  • Kapteyn J, Qualley AV, Xie Z, Fridman E, Dudareva N, Gang DR (2007) Evolution of cinnamate/p-coumarate carboxyl methyltransferases and their role in the biosynthesis of Methylcinnamate. Plant Cell 19(10):3212–3229

    Article  CAS  Google Scholar 

  • Karabourniotis G, Liakopoulos G, Nikolopoulos D, Bresta P (2020) Protective and defensive roles of non-glandular trichomes against multiple stresses: structure–function coordination. J For Res 31(1):1–12

    Article  CAS  Google Scholar 

  • Kashyap RK, Kennedy GG, Farrar RR Jr (1991) Mortality and inhibition of Helicoverpa zea egg parasitism rates by Trichogramma in relation to trichome/methyl ketone-mediated insect resistance of Lycopersicon hirsutum f. glabratum, accession PI 134417. J Chem Ecol 17:2381–2395

    Article  CAS  Google Scholar 

  • Khan MMH, Kundu R, Alam MZ (2000) Impact of trichome density on the infestation of Aphis gossypii Glover and incidence of virus disease in ash gourd [Benincasa hispida (Thunb.) Cogn.]. Int J Pest Manage 46(3):201–204

    Article  Google Scholar 

  • Khan NE, Myers JA, Tuerk AL, Curtis WR (2014) A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms. Bioresour Technol 172:201–211

    Article  CAS  Google Scholar 

  • Kirik V, Lee MM, Wester K, Herrmann U, Zheng Z, Oppenheimer D, Schiefelbein J, Hülskamp M (2005) Functional diversification of MYB23 and GL1 genes in trichome morphogenesis and initiation. Development 132:1477–1485

    Article  CAS  Google Scholar 

  • Kroumova ABM, Zaitlin D, Wagner GJ (2016) Natural variability in acyl moieties of sugar esters produced by certain tobacco and other solanaceae species. Phytochemistry 130:218–227

    Article  CAS  Google Scholar 

  • Kroumova AB, Shepherd RW, Wagner GJ (2007) Impacts of T-phylloplanin gene knockdown and of Helianthus and Datura phylloplanins on Peronospora tabacina spore germination and disease potential. Plant Physiol 144(4):1843–1851

    Article  CAS  Google Scholar 

  • Küpper H, Kroneck PMH (2005) Heavy metal uptake by plants and cyanobacteria. Met Ions Biol Syst 44:97–144

    Article  Google Scholar 

  • Lai A, Cianciolo V, Chiavarini S, Sonnino A (2000) Effects of glandular trichomes on the development of Phytophthora infestans infection in potato (S. tuberosum). Euphytica 114:165–174

    Article  Google Scholar 

  • Łaźniewska J, Macioszek VK, Kononowicz AK (2012) Plant-fungus interface: the role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiol Mol Plant Pathol 78:24–30

    Article  Google Scholar 

  • Levin DADA (1973) The role of trichomes in plant defense. Q Rev Biol 48(1):3–15

    Article  Google Scholar 

  • Li S, Harley PC, Niinemets Ü (2017) Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris. Plant Cell Environ 40(9):1984–2003

    Article  CAS  Google Scholar 

  • Li S, Tosens T, Harley PC, Jiang Y, Kanagendran A, Grosberg M, Jaamets K, Niinemets Ü (2018) Glandular trichomes as a barrier against atmospheric oxidative stress: relationships with ozone uptake, leaf damage, and emission of LOX products across a diverse set of species. Plant Cell Environ 41(6):1263–1277

    Article  CAS  Google Scholar 

  • Luckwill LC (1943) The genus Lycopersicon: an historical, biological, and taxonomic survey of the wild and cultivated tomatoes. The University Press, Aberdeen

    Google Scholar 

  • Maffei ME (2010) Sites of synthesis, biochemistry and functional role of plant volatiles. South Afr J Bot 76(4):612–631

    Article  CAS  Google Scholar 

  • Maluf W, Campos G, Cardoso M (2001) Relationships between trichome types and spider mite (Tetranychus evansi) repellence in tomatoes with respect to foliar zingiberene contents. Euphytica 121:73–80

    Article  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid Metabolism. Plant Cell 7(7):1015–1026

    CAS  Google Scholar 

  • Mellon JE, Dowd MK, Beltz SB, Moore GG (2014) Growth inhibitory effects of Gossypol and related compounds on fungal cotton root pathogens. Lett Appl Microbiol 59(2):161–168

    Article  CAS  Google Scholar 

  • Moghe GD, Leong BJ, Hurney SM, Jones AD, Last RL (2017) Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway. elife 6:e28468

    Article  Google Scholar 

  • Moulines J, Bats J-P, Lamidey A-M, Da Silva N (2004) About a practical synthesis of Ambrox® from Sclareol: a new preparation of a ketone key intermediate and a close look at its Baeyer–Villiger oxidation. Helv Chim Acta 87(10):2695–2705

    Article  CAS  Google Scholar 

  • Musetti L, Neal JJ (1997) Toxicological effect of Lycopersicon hirsutum f. glabratum and behavioral response of Macrosiphum euphorbia. J Chem Ecol 23:1321–1332

    Article  CAS  Google Scholar 

  • Obeng-Ofori D, Reichmuth C (2010) Bioactivity of eugenol, a major component of essential oil of Ocimum suave (Wild.) against four species of stored-product coleoptera. Int J Pest Manag 43:89–94

    Article  Google Scholar 

  • Pattanaik S, Patra B, Singh SK, Yuan L (2014) An overview of the gene regulatory network controlling trichome development in the model plant Arabidopsis. Front Plant Sci 5:259

    Article  Google Scholar 

  • Peiffer M, Tooker JF, Luthe DS, Felton GW (2009) Plants on early alert: glandular trichomes as sensors for insect herbivores. New Phytol 184(3):644–656

    Article  CAS  Google Scholar 

  • Pellati F, Borgonetti V, Brighenti V, Biagi M, Benvenuti S, Corsi L (2018) Cannabis sativa L. and nonpsychoactive cannabinoids: their chemistry and role against oxidative stress, inflammation, and cancer. Bio Med Res Int 2018:e1691428

    Google Scholar 

  • Rodíguez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130(3):1079–1089

    Article  Google Scholar 

  • Ross SA, ElSohly MA (1996) The volatile oil composition of fresh and air-dried buds of Cannabis sativa. J Nat Prod 59(1):49–51

    Article  CAS  Google Scholar 

  • Sallaud C, Rontein D, Onillon S, Jabès F, Duffè P, Giacalone C, Thorayal S, Escoffier C, Herbette G, Leonhardt N, Causse M, Tissier A (2009) A novel pathway for sesquiterpene biosynthesis from Z,Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell 21(1):301–317

    Article  CAS  Google Scholar 

  • Sallaud C, Giacalone C, Töpfer R, Goepfert S, Bakaher N, Rösti S, Tissier A (2012) Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J Cell MolBiol 72(1):1–17

    Article  CAS  Google Scholar 

  • Sangwan NK, Verma BS, Verma KK, Dhindsa KS (1990) Nematicidal activity of some essential plant oils. Pestic Sci 28(3):331–335

    Article  CAS  Google Scholar 

  • Schalk M, Pastore L, Mirata MA, Khim S, Schouwey M, Deguerry F, Pineda V, Rocci L, Daviet L (2012) Toward a biosynthetic route to sclareol and amber odorants. J Am Chem Soc 134:18900–18903

    Article  CAS  Google Scholar 

  • Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, Schmidt A, Wilkerson C, Last RL, Pichersky E (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl AcadSci 106(26):10865–10870

    Article  CAS  Google Scholar 

  • Schilmiller AL, Moghe GD, Fan P, Ghosh B, Ning J, Jones AD, Last RL (2015) Functionally divergent alleles and duplicated loci encoding an acyltransferase contribute to Acylsugar metabolite diversity in Solanum trichomes. Plant Cell 27(4):1002–1017

    Article  CAS  Google Scholar 

  • Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54(4):702–711

    Article  CAS  Google Scholar 

  • Schnee C, Köllner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl AcadSci U S A 103(4):1129–1134

    Article  CAS  Google Scholar 

  • Schuurink R, Tissier A (2020) Glandular trichomes: micro-organs with model status? New Phytol 225(6):2251–2266

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  Google Scholar 

  • Sharmeen JB, Mahomoodally FM, Zengin G, Maggi F (2021) Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Mol Basel Switz 26(3):666

    CAS  Google Scholar 

  • de Silva DLR, Hetherington AM, Mansfield TA (1996) Where does all the calcium go? Evidence of an important regulatory role for trichomes in two calcicoles. Plant Cell Environ 19(7):880–886

    Article  Google Scholar 

  • Sivropoulou A, Kokkini S, Lanaras T, Arsenakis M (1996) Antimicrobial and cytotoxic activities of Origanum essential oils. J Agric Food Chem 44(5):1202–1205

    Article  CAS  Google Scholar 

  • Sumner LW, Yang DS, Bench BJ, Watson BS, Li C, Jones AD (2011) Spatially resolved plant metabolomics. Annu Plant Rev 43:343–366

    CAS  Google Scholar 

  • Tan K-H, Nishida R, Toong Y-C (2002) Floral synomone of a wild orchid, Bulbophyllum cheiri, Lures bactrocera fruit flies for pollination. J Chem Ecol 28(6):1161–1172

    Article  CAS  Google Scholar 

  • Tattini M, Gravano E, Pinelli P, Mulinacci N, Romani A (2000) Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol 148(1):69–77

    Article  CAS  Google Scholar 

  • Taura F, Sirikantaramas S, Shoyama Y, Yoshikai K, Shoyama Y, Morimoto S (2007) Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett 581(16):2929–2934

    Article  CAS  Google Scholar 

  • Thangam EB, Jemima EA, Singh H, Baig MS, Khan M, Mathias CB, Church MK, Saluja R (2018) The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets. Front Immunol 9:1873

    Article  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9(3):297–304

    Article  CAS  Google Scholar 

  • Tian D, Tooker J, Peiffer M, Chung SH, Felton GW (2012) Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236(4):1053–1066

    Article  CAS  Google Scholar 

  • Tissier A, Sallaud C, Rontein D (2012) Tobacco trichomes as a platform for terpenoid biosynthesis engineering. In: Bach TJ, Rohmer M (eds) Isoprenoid synthesis in plants and microorganisms. Springer New York, New York, NY, pp 271–283

    Chapter  Google Scholar 

  • Turner GW, Gershenzon J, Croteau RB (2000) Distribution of peltate glandular trichomes on developing leaves of peppermint. Plant Physiol 124(2):655

    Article  CAS  Google Scholar 

  • Ulanowska M, Olas B (2021) Biological properties and prospects for the application of eugenol—a review. Int J Mol Sci 22(7):3671

    Article  CAS  Google Scholar 

  • Vranová E, Coman D, Gruissem W (2012) Structure and dynamics of the isoprenoid pathway network. Mol Plant 5(2):318–333

    Article  Google Scholar 

  • Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93(1):3–11

    Article  CAS  Google Scholar 

  • Walker AR, Davidson PA, Bolognesi-Winfield AJ, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TEST GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1349

    Article  CAS  Google Scholar 

  • Walker AR, Marks MD (2000) Trichome initiation in Arabidopsis. In: Plant trichomes; advances in botanical research, vol 31. Academic Press, San Diego, CA, pp 219–236

    Google Scholar 

  • Wang KC, Ohnuma S-i (2000) Isoprenyl diphosphate synthases. Biochim Biophys Acta BBA - Mol Cell Biol Lipids 1529(1):33–48

    CAS  Google Scholar 

  • Wang G (2014) Recent progress in secondary metabolism of plant glandular trichomes. Plant Biotechnol 31(5):353–361

    Article  CAS  Google Scholar 

  • Wang X, Shen C, Meng P, Tan G, Lv L (2021) Analysis and review of trichomes in plants. BMC Plant Biol 21:70

    Article  Google Scholar 

  • Wang Z, Yang Z, Li F (2019) Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton. Plant Biotechnol J 17(9):1706–1722. https://doi.org/10.1111/pbi.13167

    Article  CAS  Google Scholar 

  • Weathers PJ, Arsenault PR, Covello PS, McMickle A, Teoh KH, Reed DW (2011) Artemisinin production in Artemisia annua: studies in plants and results of a novel delivery method for treating malaria and other neglected diseases. Phytochem Rev 10(2):173–183

    Article  CAS  Google Scholar 

  • Weinhold A, Baldwin IT (2011) Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation. Proc Natl AcadSci 108(19):7855–7859

    Article  CAS  Google Scholar 

  • Werker E (2000) Trichome diversity and development. In: Advances in botanical research. Academic Press, pp 1–35

    Google Scholar 

  • Williams WG, Kennedy GG, Yamamoto RT, Thacker JD, Bordner J (1980) 2-Tridecanone: a naturally occurring insecticide from the wild tomato Lycopersicon hirsutum f. glabratum. Science 207(4433):888–889

    Article  CAS  Google Scholar 

  • Wu S, Schalk M, Clark A, Miles RB, Coates R, Chapell J (2006) Redirection of cytosolic or Plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24(11):1441–1447

    Article  CAS  Google Scholar 

  • Wu S, Jiang Z, Kempinski C, Nybo SE, Husodo S, Williams R, Chappell J (2012) Engineering triterpene metabolism in tobacco. Planta 236(3):867–877

    Article  CAS  Google Scholar 

  • Yang L, Jiang Z, Liu S, Lin R (2020) Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis. New Phytol 225(4):1593–1605

    Article  CAS  Google Scholar 

  • Yu G, Nguyen TTH, Guo Y, Schauvinhold I, Auldridge ME, Bhuiyan N, Bin-Israel I, Lijima Y, Fridman E, Noel JP, Pichersky E (2010) Enzymatic functions of wild tomato methyl ketone synthases 1 and 2. Plant Physiol 154(1):67–77

    Article  CAS  Google Scholar 

  • Yu G, Eran P (2014) Heterologous expression of Methylketone synthase 1 and Methylketone synthase 2 leads to production of Methylketones and myristic acid in transgenic plants. Plant Physiol 164(2):612–622

    Article  CAS  Google Scholar 

  • Zengin FK, Munzuroglu O (2005) Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol Cracov Ser Bot 47(2):157–164

    Google Scholar 

  • Zhang B, Schrader A (2017) TRANSPARENT TESTA GLABRA1-dependent regulation of flavonoid biosynthesis. Plan Theory 6:65

    Google Scholar 

  • Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Dev Camb Engl 130:4859–4869

    CAS  Google Scholar 

  • Zhang H, Liu P, Wang B, Yuan F (2021) The roles of trichome development genes in stress resistance. Plant Growth Regul 95(2):137–148

    Article  CAS  Google Scholar 

  • Zhu J, Dhammi A, van Kretschmar JB, Vargo EL, Apperson CS, Michael RR (2018) Novel use of Aliphatic n-Methyl ketones as a Fumigant and alternative to Methyl Bromide for insect control. Pest Manag Sci 74:648–657

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Gulati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhankhar, R., Regmi, K., Kawatra, A., Gulati, P. (2022). Trichomics: Trichomes as Natural Chemical Factories. In: Swamy, M.K., Kumar, A. (eds) Phytochemical Genomics. Springer, Singapore. https://doi.org/10.1007/978-981-19-5779-6_15

Download citation

Publish with us

Policies and ethics