Skip to main content

QoS Aware Service Provisioning and Resource Distribution in 4G/5G Heterogeneous Networks

  • Chapter
  • First Online:
Deep Learning Technologies for the Sustainable Development Goals

Part of the book series: Advanced Technologies and Societal Change ((ATSC))

Abstract

The Fourth Generation (4G) wireless communication network is widely implemented with standardized framework of operation and QoS constraints. Emergence of enhanced mobile broadband (eMBB) and user demand for ultra-reliable and low latency communication, research interests are now shifted to the Fifth Generation (5G) network. With rapid increase in number of mobile devices and associated user’s demand of diverse services, the 5G network is expected to improve overall spectrum efficiency. However, latency, energy efficiency, QoS, throughput, are some of the challenges to be addressed for a reliable network. The chapter discusses congestion control algorithms and delay bounded QoS provisioning framework. This QoS provisioning can be deployed in LTE 4G and 5G network with differential baud rate and fading parameters. Hybrid scheduling with QoS class identifier is discussed for LTE access network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma, T., Chehri, A., Fortier, P.: Review of optical and wireless backhaul networks and emerging trends of next generation 5G and 6G technologies. Trans. Emerg. Telecommun. Technol. 32(3), 1–16 (2021). https://doi.org/10.1002/ett.4155

    Article  Google Scholar 

  2. Abdalla, I., Venkatesan, S.: A QoE preserving M2M-aware hybrid scheduler for LTE uplink. In: International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT), vol. 7, pp. 127–132 (2013). https://doi.org/10.1109/MoWNet.2013.6613808

  3. Akhtar, T., Tselios, C., Politis, I.: Radio resource management: approaches and implementations from 4G to 5G and beyond. 27(1) (2021)

    Google Scholar 

  4. Tang, J., Zhang, X.: Quality-of-service driven power and rate adaptation for multichannel communications over wireless links. IEEE Trans. Wirel. Commun. 6(12), 4349–4360 (2007). https://doi.org/10.1109/TWC.2007.06031

    Article  Google Scholar 

  5. Inaba, T., Sakamoto, S., Oda, T., Barolli, L., Takizawa, M.: A new FACS for cellular wireless networks considering QoS: a comparison study of FuzzyC with MATLAB. In: Proceedings of the 18th International Conference on Network-Based Information Systems. NBiS 2015, pp. 338–344 (2015). https://doi.org/10.1109/NBiS.2015.52

  6. Beshley, M., Kryvinska, N., Seliuchenko, M., Beshley, H., Shakshuki, E.M., Yasar, A.U.H.: End-to-end QoS ‘Smart Queue’ management algorithms and traffic prioritization mechanisms for narrow-band internet of things services in 4G/5G networks. Sensors (Switzerland) 20(8) (2020). https://doi.org/10.3390/s20082324

  7. Haile, H., Grinnemo, K.J., Ferlin, S., Hurtig, P., Brunstrom, A.: End-to-end congestion control approaches for high throughput and low delay in 4G/5G cellular networks. Comput. Networks 186, 107692 (2021). https://doi.org/10.1016/j.comnet.2020.107692

  8. Beshay, J.D., Nasrabadi, A.T., Prakash, R., Francini, A.: Link-coupled TCP for 5G networks. In: IEEE/ACM 25th International Symposium on Quality of Service (IWQoS) (2017). https://doi.org/10.1109/IWQoS.2017.7969170

  9. Zhu, G., Zan, J., Yang, Y., Qi, X.: A supervised learning based QoS assurance architecture for 5G networks. IEEE Access 7, 43598–43606 (2019). https://doi.org/10.1109/ACCESS.2019.2907142

  10. Park, S., Lee, J., Kim, J., Lee, J., Lee, K.: ExLL: an extremely low-latency congestion control for mobile cellular networks. In: CoNEXT 2020: Proceedings of the 16th International Conference on emerging Networking EXperiments and Technologies, pp. 307–319 (2020)

    Google Scholar 

  11. Zhang, X., Wang, J., Poor, H.V.: Heterogeneous statistical-QoS driven resource allocation over mmWave massive-MIMO based 5G mobile wireless networks in the non-asymptotic regime. IEEE J. Sel. Areas Commun. 37(12), 2727–2743 (2019). https://doi.org/10.1109/JSAC.2019.2947941

    Article  Google Scholar 

  12. Xie, Y., Yi, F., Jamieson, K.: PBE-CC: congestion control via endpoint-centric, physical-layer bandwidth measurements. In: SIGCOMM 2020: Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication, pp. 451–464 (2020). https://doi.org/10.1145/3387514.3405880

  13. Haile, H., Grinnemo, K.J., Ferlin, S., Hurtig, P., Brunstrom, A.: End-to-end congestion control approaches for high throughput and low delay in 4G/5G cellular networks. Comput. Networks 186, 107692 (2021). https://doi.org/10.1016/j.comnet.2020.107692

    Article  Google Scholar 

  14. Chen, J., et al.: SDATP: an SDN-based traffic-adaptive and service-oriented transmission protocol. IEEE Trans. Cogn. Commun. Netw. 6(2), 756–770 (2020). https://doi.org/10.1109/TCCN.2019.2963149

    Article  Google Scholar 

  15. Sharma, T., Chehri, A., Fortier, P.: Review of optical and wireless backhaul networks and emerging trends of next generation 5G and 6G technologies. Trans. Emerg. Telecommun. Technol. 32(3), 1–16 (2021). https://doi.org/10.1002/ett.4155

    Article  Google Scholar 

  16. Ahmad, W.S.H.M.W., et al.: 5G technology: towards dynamic spectrum sharing using cognitive radio networks. IEEE Access 8, 14460–14488 (2020). https://doi.org/10.1109/ACCESS.2020.2966271

    Article  Google Scholar 

  17. Abbasloo, S., Li, T., Xu, Y., Chao, H.J.: Cellular controlled delay TCP (C2TCP). In: IFIP Networking Conference (IFIP Networking) and Workshops, pp 118–126 (2018). https://doi.org/10.23919/IFIPNetworking.2018.8696844

  18. Azzino, T., Drago, M., Polese, M., Zanella, A., Zorzi, M.: X-TCP: a cross layer approach for TCP uplink flows in mmwave networks. In: 16th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), pp. 1–6 (2017). https://doi.org/10.1109/MedHocNet.2017.8001650

  19. Na, W., Bae, B., Cho, S., Kim, N.: DL-TCP: deep learning-based transmission control protocol for disaster 5G mmWave networks. IEEE Access 7, 145134–145144 (2019). https://doi.org/10.1109/ACCESS.2019.2945582

    Article  Google Scholar 

  20. Jiang, H., Wang, Y., Lee, K., Rhee, I.: DRWA: a receiver-centric solution to bufferbloat in cellular networks. IEEE Trans. Mob. Comput. 15(11), 2719–2734 (2016). https://doi.org/10.1109/TMC.2015.2510641

    Article  Google Scholar 

  21. Lu, F., Du, H., Jain, A., Voelker, G.M., Snoeren, A.C., Terzis, A.: CQIC: revisiting cross-layer congestion control for cellular networks. In: HotMobile 2015: Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications, pp. 45–50 (2015). https://doi.org/10.1145/2699343.2699345

  22. Li, W., Zhou, F., Chowdhury, K.R., Meleis, W.M.: QTCP: adaptive congestion control with reinforcement learning. IEEE Trans. Netw. Sci. Eng. 4697, 1–13 (2018). https://doi.org/10.1109/TNSE.2018.2835758

  23. Zhong, Z., Hamchaoui, I., Ferrieux, A., Khatoun, R., Serhrouchni, A.: CDBE: a cooperative way to improve end-to-end congestion control in mobile network. In: International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), vol. 2018, pp. 216–223 (2018). https://doi.org/10.1109/WiMOB.2018.8589175

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rintu Nath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nath, R. (2023). QoS Aware Service Provisioning and Resource Distribution in 4G/5G Heterogeneous Networks. In: Kadyan, V., Singh, T.P., Ugwu, C. (eds) Deep Learning Technologies for the Sustainable Development Goals. Advanced Technologies and Societal Change. Springer, Singapore. https://doi.org/10.1007/978-981-19-5723-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5723-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5722-2

  • Online ISBN: 978-981-19-5723-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics