Skip to main content

Multi-Space Evolutionary Search for Large-Scale Multi-Objective Optimization

  • Chapter
  • First Online:
Evolutionary Multi-Task Optimization
  • 460 Accesses

Abstract

Besides solving large-scale single objective optimization problems, this chapter further demonstrate the multi-space evolutionary search for large-scale multi-objective optimization by using the evolutionary multitasking paradigm of MFO, termed MOEMT. The presented MOEMT first constructs several simplified problem spaces in a multi-variation manner to assist target optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Gupta, Y.S. Ong, L. Feng, K.C. Tan, Multi-objective multifactorial optimization in evolutionary multitasking. IEEE Trans. Cybernet. 47(7), 1652–1665 (2017)

    Article  Google Scholar 

  2. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  3. X. Chen, Y.S. Ong, M.H. Lim, K.C. Tan, A multi-facet survey on memetic computation. IEEE Trans. Evolut. Comput. 15(5), 591–607 (2011)

    Article  Google Scholar 

  4. C.R. Cloninger J. Rice, T. Reich, Multifactorial inheritance with cultural transmission and assortative mating. I. Description and basic properties of the unitary models. Am. J. Hum. Genet. 30, 618–643 (1978)

    Google Scholar 

  5. J. Rice, C.R. Cloninger, T. Reich, Multifactorial inheritance with cultural transmission and assortative mating. II. A general model of combined polygenic and cultural inheritance. Am. J. Hum. Genet. 31, 176–198 (1979)

    Google Scholar 

  6. M. Stein, J. Branke, H. Schmeck, Efficient implementation of an active set algorithm for large-scale portfolio selection. Comput. Oper. Res. 35(12), 3945–3961 (2008)

    Article  MATH  Google Scholar 

  7. S. Mahdavi, M.E. Shiri, S. Rahnamayan, Metaheuristics in large-scale global continues optimization: a survey. Inf. Sci. 295, 407–428 (2015)

    Article  MathSciNet  Google Scholar 

  8. Y. Tian, X. Zheng, X. Zhang, Y. Jin, Efficient large-scale multiobjective optimization based on a competitive swarm optimizer. IEEE Trans. Cybernet. 50(8), 1–13 (2019)

    Google Scholar 

  9. L.M. Antonio, C.A.C. Coello, Use of cooperative coevolution for solving large scale multiobjective optimization problems. 2013 IEEE Congress Evolut. Comput. 2013(2), 2758–2765 (2013)

    Google Scholar 

  10. X. Ma, F. Liu, Y. Qi, X. Wang, L. Li, L. Jiao, M. Yin, M. Gong, A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables. IEEE Trans. Evolut. Comput. 20(2), 275–298 (2016)

    Article  Google Scholar 

  11. A. Song, Q. Yang, W.N. Chen, J. Zhang, A random-based dynamic grouping strategy for large scale multi-objective optimization, in 2016 IEEE Congress on Evolutionary Computation, CEC 2016, 2016, pp. 468–475

    Google Scholar 

  12. L.M. Antonio, C.A. Coello Coello, Decomposition-based approach for solving large scale multi-objective problems, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9921(221551), 2016, pp. 525–534

    Google Scholar 

  13. X. Zhang, Y. Tian, R. Cheng, Y. Jin, A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization. IEEE Trans. Evolut. Comput. 22(1), 97–112 (2018)

    Article  Google Scholar 

  14. M. Li, J. Wei, A cooperative co-evolutionary algorithm for large-scale multi-objective optimization problems. GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion, 2018, pp. 1716–1721

    Google Scholar 

  15. H. Chen, R. Cheng, J. Wen, H. Li, J. Weng, Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations. Inf. Sci. 509, 457–469 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Cao, J. Zhao, Z. Lv, X. Liu, A distributed parallel cooperative coevolutionary multiobjective evolutionary algorithm for large-scale optimization. IEEE Trans. Ind. Inform. 13(4), 2030–2038 (2017)

    Article  Google Scholar 

  17. H. Chen, X. Zhu, W. Pedrycz, S. Yin, G. Wu, H. Yan, PEA: Parallel evolutionary algorithm by separating convergence and diversity for large-scale multi-objective optimization. Proceedings - International Conference on Distributed Computing Systems, 2018-July(July), 2018, pp. 223–232

    Google Scholar 

  18. J. Yi, L. Xing, G. Wang, J. Dong, A.V. Vasilakos, A.H. Alavi, L. Wang, Behavior of crossover operators in NSGA-III for large-scale optimization problems. Inf. Sci. 509, 470–487 (2020)

    Article  MathSciNet  Google Scholar 

  19. C. He, R. Cheng, D. Yazdani, Adaptive offspring generation for evolutionary large-scale multiobjective optimization, in IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020

    Google Scholar 

  20. Y. Tian, X. Zhang, C. Wang, Y. Jin, An evolutionary algorithm for large-scale sparse multiobjective optimization problems. IEEE Trans. Evolut. Comput. 24(2), 380–393 (2019)

    Article  Google Scholar 

  21. H. Qian, Y. Yu, Solving high-dimensional multi-objective optimization problems with low effective dimensions, in 31st AAAI Conference on Artificial Intelligence, AAAI 2017, 2017, pp. 875–881

    Google Scholar 

  22. H. Zille, H. Ishibuchi, S. Mostaghim, Y. Nojima, A framework for large-scale multiobjective optimization based on problem transformation. IEEE Trans. Evolut. Comput. 22(2), 260–275 (2018)

    Article  Google Scholar 

  23. C. He, L. Li, Y. Tian, X. Zhang, R. Cheng, Y. Jin, X. Yao, Accelerating large-scale multiobjective optimization via problem reformulation. IEEE Trans. Evolut. Comput. 23(6), 949–961 (2019)

    Article  Google Scholar 

  24. R. Liu, J. Liu, Y. Li, J. Liu, A random dynamic grouping based weight optimization framework for large-scale multi-objective optimization problems. Swarm and Evolutionary Computation 55, 100684 (2020)

    Article  Google Scholar 

  25. Y. Tian, C. Lu, X. Zhang, K.C. Tan, Y. Jin, Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks, in IEEE Transactions on Cybernetics, 2020

    Google Scholar 

  26. Y. Ge, W. Yu, Y. Lin, Y. Gong, Z. Zhan, W. Chen, J. Zhang, Distributed differential evolution based on adaptive mergence and split for large-scale optimization. IEEE Trans. Cybernet. 48(7), 2166–2180 (2017)

    Article  Google Scholar 

  27. R. Cheng, Y. Jin, A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybernet. 45(2), 191–204 (2014)

    Article  Google Scholar 

  28. R. Cheng, Y. Jin, M. Olhofer, B. Sendhoff, Test problems for large-scale multiobjective and many-objective optimization. IEEE Trans. Cybernet. 47(12), 4108–4121 (2017)

    Article  Google Scholar 

  29. H. Li, Q. Zhang, Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evolut. Comput. 13(2), 284–302 (2008)

    Article  Google Scholar 

  30. A.J. Nebro, J.J. Durillo, J. Garcia-Nieto, C.C. Coello, F. Luna, E. Alba, SMPSO: a new pso-based metaheuristic for multi-objective optimization, in 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM) (IEEE, New York, 2009), pp. 66–73

    Google Scholar 

  31. Y. Tian, R. Cheng, X. Zhang, Y. Jin, Platemo: a matlab platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)

    Article  Google Scholar 

  32. P.A. Bosman, D. Thierens, The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans. Evolut. Comput. 7(2), 174–188 (2003)

    Article  Google Scholar 

  33. A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, E. Tsang, Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion, in 2006 IEEE International Conference on Evolutionary Computation (IEEE, New York, 2006), pp. 892–899

    Google Scholar 

  34. F. Wilcoxon, S. Katti, R.A. Wilcox, Critical values and probability levels for the wilcoxon rank sum test and the wilcoxon signed rank test. Select. Tables Math. Stat. 1, 171–259 (1970)

    MATH  Google Scholar 

  35. M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)

    Article  MATH  Google Scholar 

  36. Y. Jin, T. Okabe, B. Sendhoff, Evolutionary multi-objective optimization approach to constructing neural network ensembles for regression, in Applications of Multi-Objective Evolutionary Algorithms (World Scientific, Singapore, 2004), pp. 635–673

    Google Scholar 

  37. D. Dheeru, E.K. Taniskidou, UCI machine learning repository, 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, L., Gupta, A., Tan, K., Ong, Y. (2023). Multi-Space Evolutionary Search for Large-Scale Multi-Objective Optimization. In: Evolutionary Multi-Task Optimization. Machine Learning: Foundations, Methodologies, and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-5650-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5650-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5649-2

  • Online ISBN: 978-981-19-5650-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics