Skip to main content

Climate Change and Coral Reef Ecosystem: Impacts and Management Strategies

  • Chapter
  • First Online:
Outlook of Climate Change and Fish Nutrition

Abstract

Coral reefs are one of the most diversified ecosystems globally, providing food and shelter to a wide variety of organisms. It serves as a mutual relationship for various marine fauna. It also offers multiple ecological services and goods and is an integral part of income generation through tourism and recreational activities. Despite their significant value, coral reefs are cladding substantial challenges from the global climate change phenomenon led by various anthropogenic activities. Global warming is a subset of the broader phrase climate change. It specifies the observed rise in the average air temperature near the earth’s surface and seas due to the rapid increase in greenhouse gases caused by numerous anthropogenic activities. Coral bleaching, destruction in the reef structure, ocean acidification, increased coral diseases, etc., are various consequences faced by the coral reefs due to climate change. Overall, climate change can drastically alter the ecosystem’s biodiversity spectrum, function, and productivity. Cooperative solid action is required to lessen the climate change effects on the global scale and its repercussion on corals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abesamis RA, Langlois T, Birt M, Thillainath E, Bucol AA, Arceo HO, Russ GR (2018) Benthic habitat and fish assemblage structure from shallow to mesophotic depths in a storm-impacted marine protected area. Coral Reefs 37(1):81–97

    Article  Google Scholar 

  • Allan BJ, Domenici P, Munday PL, McCormick MI (2015) Feeling the heat: the effect of acute temperature changes on predator–prey interactions in coral reef fish. Conserv Physiol 3(1):1–8

    Article  Google Scholar 

  • Arenschield A (2020) 12 things you can do to help save coral reefs. Ohio State News. https://news.osu.edu/12-things-you-can-do-to-help-save-coral-reefs

  • Bourzac K (2020) Climate change is destroying our coral reefs. Here’s how scientists plan to save them. Chem Eng News 98(6)

    Google Scholar 

  • Bruno JF, Selig ER, Casey KS, Page CA, Willis BL, Harvell CD, Sweatman H, Melendy AM (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol 5(6):e124

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  Google Scholar 

  • Cervino JM, Littler MM, Littler DS, Polson S, Goreau TF, Brooks BL, Smith GW (2005) Identification of microbes associated with coralline lethal algal disease and its relationship to glacial ice melt (global warming). Phytopathology 95:6

    Google Scholar 

  • Cervino JM, Thompson FL, Gomez-Gil B, Lorence EA, Goreau TJ, Hayes RL, Winiarski-Cervino KB, Smith GW, Hughen K, Bartels E (2008) The Vibrio core group induces yellow band disease in Caribbean and Indo-Pacific reef-building corals. J Appl Microbiol 105(5):1658–1671

    Article  CAS  Google Scholar 

  • Clark TD, Roche DG, Binning SA, Speers-Roesch B, Sundin J (2017) Maximum thermal limits of coral reef damselfishes are size dependent and resilient to near-future ocean acidification. J Exp Biol 220(19):3519–3526

    Google Scholar 

  • Coni EO, Booth DJ, Nagelkerken I (2021) Novel species interactions and environmental conditions reduce foraging competency at the temperate range edge of a range-extending coral reef fish. Coral Reefs 40(5):1525–1536

    Article  Google Scholar 

  • D’Agostino D, Burt JA, Reader T, Vaughan GO, Chapman BB, Santinelli V, Cavalcante GH, Feary DA (2020) The influence of thermal extremes on coral reef fish behaviour in the Arabian/Persian Gulf. Coral Reefs 39(3):733–744

    Article  Google Scholar 

  • D’Agostino D, Burt JA, Santinelli V, Vaughan GO, Fowler AM, Reader T, Taylor BM, Hoey AS, Cavalcante GH, Bauman AG, Feary DA (2021) Growth impacts in a changing ocean: insights from two coral reef fishes in an extreme environment. Coral Reefs 40(2):433–446

    Article  Google Scholar 

  • Domenici P, Allan B, McCormick MI, Munday PL (2012) Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biol Lett 8(1):78–81

    Article  CAS  Google Scholar 

  • Eddy TD, Lam VW, Reygondeau G, Cisneros-Montemayor AM, Greer K, Palomares MLD, Bruno JF, Ota Y, Cheung WWL (2021) Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4(9):1278–1285

    Article  Google Scholar 

  • Gil-Agudelo DL, Myers C, Smith GW, Kim K (2006) Changes in the microbial communities associated with Gorgonia ventalina during aspergillosis infection. Dis Aquat Org 69(1):89–94

    Article  Google Scholar 

  • Greene A, Donahue MJ, Caldwell JM, Heron SF, Geiger E, Raymundo LJ (2020) Coral disease time series highlight size-dependent risk and other drivers of white syndrome in a multi-species model. Front Mar Sci 7:601469

    Article  Google Scholar 

  • Harvell D, Kim K, Quirolo C, Weir J, Smith G (2001) Coral bleaching and disease: contributors to 1998 mass mortality in Briareum asbestinum (Octocorallia, Gorgonacea). Hydrobiologia 460(1):97–104

    Article  Google Scholar 

  • Harvell D, Altizer S, Cattadori IM, Harrington L, Weil E (2009) Climate change and wildlife diseases: when does the host matter the most? Ecology 90(4):912–920

    Article  Google Scholar 

  • Hoegh-Guldberg O, Kennedy EV, Beyer HL, McClennen C, Possingham HP (2018) Securing a long-term future for coral reefs. Trends Ecol Evol 33(12):936–944

    Article  Google Scholar 

  • IPCC (2007) Synthesis report. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change, Geneva, p 104

    Google Scholar 

  • IPCC (2019) An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In: Global warming of 1.5°C, pp 80–81

    Google Scholar 

  • Jones RJ, Bowyer J, Hoegh-Guldberg O, Blackall LL (2004) Dynamics of a temperature-related coral disease outbreak. Mar Ecol Prog Ser 281:63–77

    Article  Google Scholar 

  • Kleypas JA, McManus JW, Menez LAB (1999a) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Article  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999b) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  CAS  Google Scholar 

  • Magel JM, Dimoff SA, Baum JK (2020) Direct and indirect effects of climate change amplified pulse heat stress events on coral reef fish communities. Ecol Appl 30(6):e02124

    Article  Google Scholar 

  • Miller GM, Watson SA, Donelson JM, McCormick MI, Munday PL (2012) Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat Clim Chang 2(12):858–861

    Article  CAS  Google Scholar 

  • Muller EM, van Woesik R (2014) Genetic susceptibility, colony size, and water temperature drive white-pox disease on the coral Acropora palmata. PLoS One 9(11):e110759

    Article  Google Scholar 

  • Munday PL, Kingsford MJ, O’Callaghan M, Donelson JM (2008) Elevated temperature restricts growth potential of the coral reef fish Acanthochromis polyacanthus. Coral Reefs 27(4):927–931

    Article  Google Scholar 

  • Ninawe AS, Indulkar ST, Amin A (2018) Impact of climate change on fisheries. In: Biotechnology for sustainable agriculture. Woodhead Publishing, pp 257–280

    Chapter  Google Scholar 

  • NOAA (2019) Coral reef ecosystems. National Oceanic and Atmospheric Administration US Department of Commerce. https://www.noaa.gov/education/resource-collections/marine-life/coral-reef-ecosystems

  • Nowicki JP, Miller GM, Munday PL (2012) Interactive effects of elevated temperature and CO2 on foraging behavior of juvenile coral reef fish. J Exp Mar Biol Ecol 412:46–51

    Article  Google Scholar 

  • Pratchett MS, Wilson SK, Munday PL (2015) 13 Effects of climate change on coral reef fishes. In: Mora C (ed) Ecology of fishes on coral reefs, vol 127. Cambridge University Press

    Google Scholar 

  • Pratchett MS, Thompson CA, Hoey AS, Cowman PF, Wilson SK (2018) Effects of coral bleaching and coral loss on the structure and function of reef fish assemblages. In: Coral bleaching. Springer, Cham, pp 265–293

    Chapter  Google Scholar 

  • Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370

    Article  CAS  Google Scholar 

  • Richardson LE, Graham NAJ, Pratchett MS, Eurich JG, Hoey AS (2018) Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob Chang Biol 24(7):3117–3129

    Article  Google Scholar 

  • Rosenberg E, Ben-Haim Y (2002) Microbial diseases of corals and global warming. Environ Microbiol 4(6):318–326

    Article  Google Scholar 

  • Spinks RK, Bonzi LC, Ravasi T, Munday PL, Donelson JM (2021) Sex-and time-specific parental effects of warming on reproduction and offspring quality in a coral reef fish. Evol Appl 14(4):1145–1158

    Article  CAS  Google Scholar 

  • Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 international geophysical year. Nature 457:459–462

    Article  CAS  Google Scholar 

  • Strong AE, Barrientos CS, Duda C, Sapper J (1996) Improved satellite technique for monitoring coral reef bleaching. In: Proceedings of the eighth international coral reef symposium, Panama, June 1996, pp 1495–1497

    Google Scholar 

  • TCRA (2005) Coral reefs and global climate change. The Coral Reef Alliance (CORAL), San Francisco, CA

    Google Scholar 

  • Toren A, Landau L, Kushmaro A, Loya Y, Rosenberg E (1998) Effect of temperature on adhesion of Vibrio strain AK-1 to Oculina patagonica and on coral bleaching. Appl Environ Microbiol 64(4):1379–1384

    Article  CAS  Google Scholar 

  • Toscano MA, Liu G, Guch IC, Casey KS, Strong AE, Meyer JE (2000) Improved prediction of coral bleaching using high-resolution hotspot anomaly mapping. In: Proceedings of the ninth international coral reef symposium, Bali, vol 2, pp 1143–1147

    Google Scholar 

  • Witze A (2008) Losing Greenland. Nature 452:798–802

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suyani, N.K., Singh, M.K., Brahmchari, R.K. (2022). Climate Change and Coral Reef Ecosystem: Impacts and Management Strategies. In: Sinha, A., Kumar, S., Kumari, K. (eds) Outlook of Climate Change and Fish Nutrition. Springer, Singapore. https://doi.org/10.1007/978-981-19-5500-6_6

Download citation

Publish with us

Policies and ethics