Skip to main content

Vulnerability and Mitigation Approach to Nutritional Pathology for Sustainable Fish Growth in Changing Climatic Conditions

  • Chapter
  • First Online:
Outlook of Climate Change and Fish Nutrition

Abstract

Aquaculture represents a booming sector to augment human food and nutritional security. The changing face of the climate over the years has given a lesson for improvising the system and the nutritional aspects of the candidate fish species. Given this scenario, nutritional biotechnology approaches through the application of functional foods in aquafeed have a lot to do with the futuristic mitigation of climate-induced vulnerability and challenges. The physiological dysfunction, as seen through deficiency diseases/syndromes in fishes when stocked in the highly intensive system, is of grave concern to the farming community. Therefore, a precise understanding of the nutritional need of the species apart from the role of several functional foods in aquaculture is essential. Several functional foods in the forms of probiotics, prebiotics, synbiotics, vitamins, nutri-enzymes, etc. are available through a series of research on fish models. A prudent approach for its field-level application can guide us to tackle the climate-induced scenario for sustaining the growing aquaculture industry. In this context, the chapter provides a narrative account of the critical nutrient deficiency diseases and the functional role of dietary nutrients to tackle the scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Tawwab M, Abdel-Rahman AM, Ismael NEM (2008) Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture 280:185–189

    Article  Google Scholar 

  • Abid A, Davies SJ, Waines P, Emery M, Castex M, Gioacchini G, Merrifield DL (2013) Dietary synbiotic application modulates Atlantic salmon (Salmo salar) intestinal microbial communities and intestinal immunity. Fish Shellfish Immunol 35:1948–1956

    Article  CAS  Google Scholar 

  • Adel M, El-Sayed AM, Yeganeh S, Dadar M, Giri SS (2017) Effect of potential probiotic Lactococcus lactis subsp. lactis on growth performance, intestinal microbiota, digestive enzyme activities, and disease resistance of Litopenaeus vannamei. Probiotics Antimicrob Proteins 9(2):150–156

    Article  CAS  Google Scholar 

  • Amoah K, Huang QC, Tan BP, Zhang S, Chi SY, Yang QH, Dong XH (2019) Dietary supplementation of probiotic Bacillus coagulans ATCC 7050, improves the growth performance, intestinal morphology, microflora, immune response, and disease confrontation of Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 87:796–808

    Article  CAS  Google Scholar 

  • Aubin J, Gatesoupe F-J, Labbe L, Lebrun L (2005) Trial of probiotics to prevent the vertebral column compression syndrome in rainbow trout (Oncorhynchus mykiss Walbaum). Aquacult Res 36:758–767

    Article  Google Scholar 

  • Bagheri T, Hedayati SA, Yavari V, Alizade M, Farzanfar A (2008) Growth, survival and gut microbial load of rainbow trout (Onchorhynchus mykiss) fry given diet supplemented with probiotic during the two months of first feeding. Turk J Fish Aquat Sci 8:43–48

    Google Scholar 

  • Bagni M, Romano N, Finoia MG, Abelli L, Scapigliati G, Tiscar PG, Marino G (2005) Short- and long-term effects of a dietary yeast beta-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax). Fish Shellfish Immunol 18:311–325

    Article  CAS  Google Scholar 

  • Bakke-McKellep AM, Penn MH, Salas PM, Refstie S, Sperstad S, Landsverk T, Krogdahl A (2007) Effects of dietary soyabean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L.). Br J Nutr 97:699–713

    Article  CAS  Google Scholar 

  • Betiku OC, Yeoman CJ, Gibson Gaylord T, Duff GC, Hamerly T, Bothner B, Sealey WM (2017) Differences in amino acid catabolism by gut microbes with/without prebiotics inclusion in GDDY-based diet affect feed utilization in rainbow trout. Aquaculture 490:108–119

    Article  Google Scholar 

  • Bowden TJ, Thompson KD, Morgan AL, Gratacap RM, Nikoskelainen S (2007) Seasonal variation and the immune response: a fish perspective. Fish Shellfish Immunol 22(6):695–706

    Article  Google Scholar 

  • Boyd CE, D'Abramo LR, Glencross BD, Huyben DC, Juarez LM, Lockwood GS, Valenti WC (2020) Achieving sustainable aquaculture: historical and current perspectives and future needs and challenges. J World Aquacult Soc 51(3):578–633

    Article  Google Scholar 

  • Brander KM (2007) Global fish production and climate change. Proc Natl Acad Sci 104(50):19709–19714

    Article  CAS  Google Scholar 

  • Callaway R, Shinn AP, Grenfell SE, Bron JE, Burnell G, Cook EJ, Crumlish M, Culloty S, Davidson K, Ellis RP, Flynn KJ (2012) Review of climate change impacts on marine aquaculture in the UK and Ireland. Aquat Conserv Mar Freshwat Ecosyst 22(3):389–421

    Article  Google Scholar 

  • Castillo S, Gatlin DM III (2015) Dietary supplementation of exogenous carbohydrase enzymes in fish nutrition: a review. Aquaculture 435:286–292

    Article  CAS  Google Scholar 

  • Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Moriñigo MA, Esteban MA (2013) Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish Shellfish Immunol 34:1063–1070

    Article  CAS  Google Scholar 

  • Cornejo-Granados F, Gallardo-Becerra L, Leonardo-Reza M, Ochoa-Romo JP, Ochoa-Leyva A (2018) A meta-analysis reveals the environmental and host factors shaping the structure and function of the shrimp microbiota. PeerJ 6:e5382

    Article  Google Scholar 

  • D'Abramo L, Slater MJ (2019) Climate change: response and role of global aquaculture. J World Aquacult Soc 51(4):710–714

    Article  Google Scholar 

  • Dalsgaard J, Bach Knudsen KE, Verlhac V, Ekmann KS, Pedersen PB (2016) Supplementing enzymes to extruded, soybean-based diet improves breakdown of non-starch polysaccharides in rainbow trout (Oncorhynchus mykiss). Aquacult Nutr 22(2):419–426

    Article  CAS  Google Scholar 

  • Dimitroglou A, Reynolds P, Ravnoy B, Johnsen F, Sweetman F, Johansen W, Davies SJ (2011) The effect of mannan oligosaccharide supplementation on Atlantic salmon smolts (Salmo salar L.) fed diets with high levels of plant proteins. J Aquacult Res Dev S1:011. https://doi.org/10.4172/2155-9546.S1-011

    Article  Google Scholar 

  • El-Boshy ME, El-Ashram AM, Abdelhamid FM, Gadalla HA (2010) Immunomodulatory effect of dietary Saccharomyces cerevisiae, beta-glucan and laminaran in mercuric chloride treated Nile tilapia (Oreochromis niloticus) and experimentally infected with Aeromonas hydrophila. Fish Shellfish Immunol 28:802–808

    Article  CAS  Google Scholar 

  • Franco R, Martín L, Arenal A, Santiesteban D, Sotolongo J, Cabrera H, Castillo NM (2017) Evaluation of two probiotics used during farm production of white shrimp Litopenaeus vannamei (Crustacea: Decapoda). Aquacult Res 48:1936–1950

    Article  CAS  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    Article  CAS  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    Article  CAS  Google Scholar 

  • Glencross BD, Boujard T, Kaushik SJ (2003) Influence of oligosaccharides on the digestibility of lupin meals when fed to rainbow trout, Oncorhynchus mykiss. Aquaculture 219(1–4):703–713

    Article  CAS  Google Scholar 

  • Gonçalves A, Gallardo-Escárate C (2017) Microbiome dynamic modulation through functional diets based on pre- and probiotics (mannan-oligosaccharides and Saccharomyces cerevisiae) in juvenile rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 122:1333–1347

    Article  Google Scholar 

  • Grisdale-Helland B, Helland SJ, Gatlin DM (2008) The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquaculture 283:163–167

    Article  CAS  Google Scholar 

  • Gültepe N, Salnur S, Hoşsu B, Hisar OLCAY (2011) Dietary supplementation with Mannanoligosaccharides (MOS) from Bio-Mos enhances growth parameters and digestive capacity of gilthead sea bream (Sparus aurata). Aquac Nutr 17(5):482–487

    Article  Google Scholar 

  • Halver JE (2002) The vitamins. In: Fish nutrition. Academic Press, San Diego, California, pp 61–141

    Google Scholar 

  • Hamdan AM, El-Sayed AF, Mahmoud MM (2016) Effects of a novel marine probiotic, Lactobacillus plantarum AH 78, on growth performance and immune response of Nile tilapia (Oreochromis niloticus). J Appl Microbiol 120:1061–1073

    Article  CAS  Google Scholar 

  • Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ et al (1999) Emerging marine diseases—climate links and anthropogenic factors. Science 285(5433):1505–1510

    Article  CAS  Google Scholar 

  • Huyben D, Sun L, Moccia R, Kiessling A, Dicksved J, Lundh T (2018) Dietary live yeast and increased water temperature influence the gut microbiota of rainbow trout. J Appl Microbiol 124(6):1377–1392

    Article  CAS  Google Scholar 

  • Imelda J, Paulraj R (2002) Nutritional deficiency diseases in fish-Winter school on recent advances in diagnosis and management of diseases in mariculture, 7th to 27th November 2002, Course Manual

    Google Scholar 

  • Ingerslev HC, von GersdorffJørgensen L, Lenz Strube M, Larsen N, Dalsgaard I, Boye M, Madsen L (2014) The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture 424-425:24–34

    Article  Google Scholar 

  • Jacobsen HJ, Kousoulaki K, Sandberg AS, Carlsson NG, Ahlstrøm Ø, Oterhals Å (2018a) Enzyme pre-treatment of soybean meal: effects on non-starch carbohydrates, protein, phytic acid, and saponin biotransformation and digestibility in mink (Neovison vision). Anim Feed Sci Technol 236:1–13

    Article  CAS  Google Scholar 

  • Jacobsen HJ, Samuelsen TA, Girons A, Kousoulaki K (2018b) Different enzyme incorporation strategies in Atlantic salmon diet containing soybean meal: effects on feed quality, fish performance, nutrient digestibility and distal intestinal morphology. Aquaculture 491:302–309

    Article  CAS  Google Scholar 

  • Joseph J, Raj RP (2002) Technical paper–8. In: Nutritional deficiency diseases in fish, vol 682. Central Marine Fisheries Research Institute, Kochi, p 014

    Google Scholar 

  • Ketola HG (1983) Requirement for dietary lysine and arginine by fry of rainbow trout. J Anim Sci 56(1):101–107

    Article  CAS  Google Scholar 

  • Kumar V, Sinha AK, Makkar HPS, De Boeck G, Becker K (2012) Phytate and phytase in fish nutrition. J Anim Physiol Anim Nutr 96(3):335–364

    Article  CAS  Google Scholar 

  • Li P, Burr GS, Gatlin DM III, Hume ME, Patnaik S, Castille FL, Lawrence AL (2007) Dietary supplementation of short-chain fructooligosaccharides influences gastrointestinal microbiota composition and immunity characteristics of Pacific white shrimp, Litopenaeus vannamei, cultured in a recirculating system. J Nutr 137(12):2763–2768

    Article  CAS  Google Scholar 

  • Liebert F, Portz L (2007) Different sources of microbial phytase in plant based low phosphorus diets for Nile tilapia Oreochromis niloticus may provide different effects on phytate degradation. Aquaculture 267(1–4):292–299

    Article  CAS  Google Scholar 

  • Luna-González A, Almaraz-Salas JC, Fierro-Coronado JA, Flores-Miranda MDC, González-Ocampo HA, PerazaGómez V (2012) The prebiotic inulin increases the phenoloxidase activity and reduces the prevalence of WSSV in whiteleg shrimp (Litopenaeus vannamei) cultured under laboratory conditions. Aquaculture 362-363:28–32

    Article  Google Scholar 

  • Maas RM, Verdegem MC, Dersjant-Li Y, Schrama JW (2018) The effect of phytase, xylanase and their combination on growth performance and nutrient utilization in Nile tilapia. Aquaculture 487:7–14

    Article  CAS  Google Scholar 

  • Mallick A, Panigrahi AK (2018) Effect of temperature variation on disease proliferation of common fishes in perspective of climate change. International Journal of Experimental Research and Review 16:40–49

    Article  Google Scholar 

  • Merrifield DL, Bradley G, Baker RTM, Davies SJ (2010) Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. Aquacult Nutr 16:496–503

    Article  CAS  Google Scholar 

  • Mishra SS, Rakesh D, Dhiman M, Choudhary P, Debbarma J, Sahoo SN, Mishra CK (2017) Present status of fish disease management in freshwater aquaculture in India: state-of-the-art-review. J Aquac Fisheries 1:003. https://doi.org/10.24966/AAF-5523/100003

    Article  Google Scholar 

  • Nakagawa H, Sato M, Gatlin D III (eds) (2007) Dietary supplements for the health and quality of cultured fish. Cab International, Wallingford

    Google Scholar 

  • Navarrete P, Tovar-Ramírez D (2014) Use of yeasts as probiotics in fish aquaculture. In: Hernandez-Vergara M (ed) Sustainable aquaculture techniques, pp 135–172

    Google Scholar 

  • Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14

    Article  CAS  Google Scholar 

  • Newaj-Fyzul A, Adesiyun AA, Mutani A, Ramsubhag A, Brunt J, Austin B (2007) Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol 103:1699–1706

    Article  CAS  Google Scholar 

  • Ortiz LT, Rebolé A, Velasco S, Rodríguez ML, Treviño J, Tejedor JL, Alzueta C (2013) Effects of inulin and fructooligosaccharides on growth performance, body chemical composition and intestinal microbiota of farmed rainbow trout (Oncorhynchus mykiss). Aquacult Nutr 19:475–482

    Article  CAS  Google Scholar 

  • Panigrahi A, Kiron V, Kobayashi T, Puangkaew J, Satoh S, Sugita H (2004) Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136. Vet Immunol Immunopathol 102:379–388

    Article  CAS  Google Scholar 

  • Panigrahi A, Kiron V, Puangkaew J, Kobayashi T, Satoh S, Sugita H (2005) The viability of probiotic bacteria as a factor influencing the immune response in rainbow trout Oncorhynchus mykiss. Aquaculture 243:241–254

    Article  Google Scholar 

  • Pirarat N, Kobayashi T, Katagiri T, Maita M, Endo M (2006) Protective effects and mechanisms of a probiotic bacterium Lactobacillus rhamnosus against experimental Edwardsiella tarda infection in tilapia (Oreochromis niloticus). Vet Immunol Immunopathol 113:339–347

    Article  CAS  Google Scholar 

  • Poston HA, Riis RC, Rumsey GL, Ketola HG (1977) The effect of supplemental dietary amino acids, minerals, and vitamins on salmonids fed cataractogenic diets. Cornell Vet 67(4):472–509

    CAS  Google Scholar 

  • Raida MK, Larsen JL, Nielsen ME, Buchmann K (2003) Enhanced resistance of rainbow trout, Oncorhynchus mykiss (Walbaum), against Yersinia ruckeri challenge following oral administration of Bacillus subtilis and B. licheniformis (BioPlus2B). J Fish Dis 26:495–498

    Article  CAS  Google Scholar 

  • Ran C, Huang L, Liu Z, Xu L, Yang Y, Tacon P, Zhou Z (2015) A comparison of the beneficial effects of live and heat-inactivated baker's yeast on Nile tilapia: suggestions on the role and function of the secretory metabolites released from the yeast. PLoS One 10:e0145448

    Article  Google Scholar 

  • Refstie S, Baeverfjord G, Seim RR, Elvebø O (2010) Effects of dietary yeast cell wall β-glucans and MOS on performance, gut health, and salmon lice resistance in Atlantic salmon (Salmo salar) fed sunflower and soybean meal. Aquaculture 305:109–116

    Article  CAS  Google Scholar 

  • Ringo E, Olsen RE, Vecino JG, Wadsworth S, Song SK (2012) Use of immunostimulants and nucleotides in aquaculture: a review. J Mar Sci Res Dev 2(1):104

    Google Scholar 

  • Ringo E, Hossein S, Ghosh K, Doan HV, Beck BR, Song S (2018) Lactic acid bacteria in finfish—an update. Front Microbiol 9:1818

    Article  Google Scholar 

  • Rodriguez-Estrada U, Satoh S, Haga Y, Fushimi H, Sweetman J (2013) Effects of inactivated Enterococcus faecalis and mannan oligosaccharide and their combination on growth, immunity, and disease protection in rainbow trout. N Am J Aquac 75(3):416–428

    Article  Google Scholar 

  • Safari R, Adel M, Lazado CC, Caipang CM, Dadar M (2016) Host-derived probiotics enterococcus casseliflavus improves resistance against streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation. Fish Shellfish Immunol 52:198–205

    Article  CAS  Google Scholar 

  • Selim KM, Reda RM (2015) Improvement of immunity and disease resistance in the Nile tilapia, Oreochromis niloticus, by dietary supplementation with Bacillus amyloliquefaciens. Fish Shellfish Immunol 44:496–503

    Article  CAS  Google Scholar 

  • Shi Z, Li XQ, Chowdhury MK, Chen JN, Leng XJ (2016) Effects of protease supplementation in low fish meal pelleted and extruded diets on growth, nutrient retention and digestibility of gibel carp, Carassius auratus gibelio. Aquaculture 460:37–44

    Article  CAS  Google Scholar 

  • Shefat SHT, Karim MA (2018) Nutritional diseases of fish in aquaculture and their management: a review. Acta Scientific Pharmaceutical Sciences 2(12):50–58

    Google Scholar 

  • Standen BT, Rawling MD, Davies SJ, Castex M, Foey A, Gioacchini G, Merrifield DL (2013) Probiotic Pediococcus acidilactici modulates both localised intestinal- and peripheral-immunity in tilapia (Oreochromis niloticus). Fish Shellfish Immunol 35:1097–1104

    Article  CAS  Google Scholar 

  • Standen BT, Peggs DL, Rawling MD, Foey A, Davies SJ, Santos GA, Merrifield DL (2016) Dietary administration of a commercial mixed-species probiotic improves growth performance and modulates the intestinal immunity of tilapia, Oreochromis niloticus. Fish Shellfish Immunol 49:427–435

    Article  CAS  Google Scholar 

  • Sugiura SH, Gabaudan J, Dong FM, Hardy RW (2001) Dietary microbial phytase supplementation and the utilization of phosphorus, trace minerals and protein by rainbow trout [Oncorhynchus mykiss (Walbaum)] fed soybean meal based diets. Aquacult Res 32(7):583–592

    Article  CAS  Google Scholar 

  • Taoka Y, Maeda H, Jo JY, Kim SM, Park SI, Yoshikawa T, Sakata T (2006) Use of live and dead probiotic cells in tilapia Oreochromis niloticus. Fish Sci 72:755–766

    Article  CAS  Google Scholar 

  • Torrecillas S, Makol A, Caballero MJ, Montero D, Robaina L, Real F, Izquierdo MS (2007) Immune stimulation and improved infection resistance in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides. Fish Shellfish Immunol 23:969–981

    Article  CAS  Google Scholar 

  • Torrecillas S, Makol A, Caballero MJ, Montero D, Ginés R, Sweetman J, Izquierdo M (2011) Improved feed utilization, intestinal mucus production and immune parameters in sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Aquacult Nutr 17:223–233

    Article  CAS  Google Scholar 

  • Torrecillas S, Montero D, Izquierdo M (2014) Improved health and growth of fish fed mannan oligosaccharides: potential mode of action. Fish Shellfish Immunol 36:525–544

    Article  CAS  Google Scholar 

  • Tukmachi A, Bandboni M (2014) Effects of Saccharomyces cerevisiae supplementation on immune response, hematological parameters, body composition in rainbow trout Oncorhynchus mykiss (Walbaum, 1792). J Appl Ichthyol 30:55–61

    Article  Google Scholar 

  • Villamil L, Reyes C, Martínez-Silva MA (2014) In vivo and in vitro assessment of Lactobacillus acidophilus probiotic for tilapia (Oreochromis niloticus, Perciformes: Cichlidae) culture improvement. Aquacult Res 45:1116–1125

    Article  CAS  Google Scholar 

  • Waagbø R (2006) Chap. 13 feeding and disease resistance in fish. In: Mosenthin R, Zentek J, Zebrowska T (eds) Biology of growing animal. Elsevier, London, pp 387–415

    Chapter  Google Scholar 

  • Waché Y, Auffray F, Gatesoupe F-J, Zambonino J, Gayet V, Labbé L, Quentel C (2006) Cross effects of the strain of dietary Saccharomyces cerevisiae and rearing conditions on the onset of intestinal microbiota and digestive enzymes in rainbow trout, Onchorhynchus mykiss, fry. Aquaculture 258:470–478

    Article  Google Scholar 

  • Walker PJ, Mohan CV (2009) Viral disease emergence in shrimp aquaculture: origins, impact and the effectiveness of health management strategies. Rev Aquac 1(2):125–154

    Article  Google Scholar 

  • Walton MJ, Cowey CB, Adron J (1984) The effect of dietary lysine levels on growth and metabolism of rainbow trout (Salmo gairdneri). Br J Nutr 52(1):115–122

    Article  CAS  Google Scholar 

  • Wang Y-B, Tian Z-Q, Yao J-T, Li W-F (2008) Effect of probiotics, Enterococcus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture 277:203–207

    Article  Google Scholar 

  • Wilson RP (1994) Utilization of dietary carbohydrate by fish. Aquaculture 124(1–4):67–80

    Article  CAS  Google Scholar 

  • Xie JJ, Liu QQ, Liao S, Fang HH, Yin P, Xie SW, Niu J (2019) Effects of dietary mixed probiotics on growth, non-specific immunity, intestinal morphology and microbiota of juvenile pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 90:456–465

    Article  CAS  Google Scholar 

  • Zuo ZH, Shang BJ, Shao YC, Li WY, Sun JS (2019) Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of Litopenaeus vannamei. Fish Shellfish Immunol 86:160–168

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munilkumar Sukham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lingaraju, N., Malik, M.A., Singh, S.K., Sukham, M. (2022). Vulnerability and Mitigation Approach to Nutritional Pathology for Sustainable Fish Growth in Changing Climatic Conditions. In: Sinha, A., Kumar, S., Kumari, K. (eds) Outlook of Climate Change and Fish Nutrition. Springer, Singapore. https://doi.org/10.1007/978-981-19-5500-6_17

Download citation

Publish with us

Policies and ethics