Skip to main content

Sediment and Remediation of Aquaculture Ponds

  • Chapter
  • First Online:
Aquaculture Ecology
  • 421 Accesses

Abstract

The soil carries the water of the pond. The sediment or bottom mud of aquaculture pond is an important part of pond ecosystem. The nutrient exchange takes place between the sediment and bottom water, which has a great influence on the water quality in pond. Aquaculture activities will change the properties of the surface sediment, and then affect the growth of farmed animals and yield of the pond system. When the pond sediment is altered to adversely affect farming activities, attempts should be made to remediate the pond sediment. Physical, chemical and biological methods are used in pond sediment remediations. In this chapter sediment and sedimentation in aquaculture ponds, respiration of aquaculture pond sediment, N and P exchange between sediment and overlying water, and remediation of aquaculture pond sediment are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avnimelech Y, Zohar G (1986) The effect of local anaerobic condition on growth retardation in aquaculture systems. Aquaculture 58:167–174

    Article  CAS  Google Scholar 

  • Bishop JKB, Edmond JM, Ketten DR et al (1977) The chemistry, biology and vertical flux of particulate matter from the upper 400m of the equatorial Atlantic Ocean. Deep-Sea Res 24:511–548

    Article  CAS  Google Scholar 

  • Boyd CE (1995) Bottom soils, sediment, and pond aquaculture. Chapman & Hall, New York, p 340

    Book  Google Scholar 

  • Boyd CE, Wood CW, Chaney PL et al (2010) Role of aquaculture pond sediments in sequestration of annual global carbon emissions. Environ Poll 158(8):2537–2540

    Article  CAS  Google Scholar 

  • Bramwell SA, Devi Prasad PV (1995) Performance of a small aquatic plant wastewater treatment system under Caribbean conditions. J Environ Manag 44:213–220

    Article  Google Scholar 

  • Chamberlain G (1988) Rethinking shrimp pond management. Texas Agric Ext Ser Coast Aquac 5(2):1–19

    Google Scholar 

  • Chen JR (1996) Hydrochemistry. China Agricultural Press, Beijing, p 283. (in Chinese)

    Google Scholar 

  • Dahlbäck B, Gunnarsson LǺH (1981) Sedimentation and sulfate reduction under a mussel culture. Mar Biol 63(3):269–275

    Article  Google Scholar 

  • Funge S, Briggs MRP (1998) Nutrient budgets in intensive shrimp ponds: implications for sustainability. Aquaculture 164(18):117–133

    Article  Google Scholar 

  • Ghosh SR, Mohanty AR (1981) Observation on the effect of aeration on mineralization of organic nitrogen in fish pond soil. Isr J Aquac Bamidgeh 33:50–56

    Google Scholar 

  • Gowen RJ (1992) Aquaculture and environment. In: De Pauw N, Joyce J (eds) Aquaculture and the Environment. Gent: European Aquaculture Society Special Publication, No. 16, pp 23–48

    Google Scholar 

  • Green BW (1995) Chemical budgets for organically fertilized fish ponds in the dry tropics. J World Aquac Soc 26(3):284–296

    Article  Google Scholar 

  • Guo YJ (2011) Study on dynamics of nutrients across sediment-water interface in composite culture pond of grass carp (Ctenopharyngodon idellus) and shrimp (Litopenaeus vannamei). Master Thesis of Ocean University of China, Qingdao, China. (in Chinese with English abstract)

    Google Scholar 

  • Haven DS, Morales-Alamo R (1966) Aspects of biodeposition by oysters and other invertebrate filter feeders. Limno Oceannogr 11(4):487–498

    Article  Google Scholar 

  • Jamillo E, Bertrán C, Bravo A (1992) Mussel biodeposition in an estuary in southern Chile. Mar Ecol Progress Ser 82:85–94

    Article  Google Scholar 

  • Jin CH, Lu KH, Zheng ZM et al (2010) Application of immobilized microorganisms in Litopenaeus vannamei aquaculture ponds. J Fish China 34(2):285–291. (in Chinese with English abstract)

    Article  Google Scholar 

  • Jin XC, Wang SR, Pang Y (2004) The influence of phosphorus forms and pH on release of phosphorus from sediments in Taihu Lake. China Envir Sci 24(6):707–711. (in Chinese with English abstract)

    CAS  Google Scholar 

  • Li JW, Dong SL, Tian XL et al (2015) Effects of the diatom Cylindrotheca fusiformis on the growth of the sea cucumber Apostichopus japonicus and water quality in ponds. Chin J Oceanol Limnol 23(4):955–965

    CAS  Google Scholar 

  • Lin L, Li ZJ, Guo ZX et al (2005) Influence of Bacillus on the bacterial communities in the sediment of shrimp ponds. Chin J Ecol 24(1):26–29. (in Chinese with English abstract)

    Google Scholar 

  • Liu PF, Chen ZL, Liu J (2002b) Effects of salinity and pH on the release of ammonia nitrogen from the sediments of Chongming Dongtan. Shanghai Environ Sci 21(5):271–273. (in Chinese)

    CAS  Google Scholar 

  • Mezainis VE (1977) Metabolic rates of pond ecosystems under intensive catfish cultivation. M.S. Thesis of Auburn University, Auburn, Alabama

    Google Scholar 

  • Mortimer CH (1942) The exchange of dissolved substances between mud and water in lakes. J Ecol 30:147–201

    Article  CAS  Google Scholar 

  • Ren YC, Dong SL, Wang F et al (2010) Sedimentation and sediment characteristics in sea cucumber Apostichopus japonicus (Selenka) culture ponds. Aquac Res 42:14–21

    Article  Google Scholar 

  • Ren YC, Dong SL, Qin CX et al (2012) Ecological effects of co-culturing sea cucumber Apostichopus japonicus (Selenka) with scallop Chlamys farreri in earthen ponds. Chin J Oceanol Limnol 30(1):71–79

    Article  Google Scholar 

  • Sayama M, Kurihara Y (1983) Relationship between burrowing activity of the polychaetous annelid, Neanthes japonica and nitrification-denitrification processes in the sediments. J Exp Mar Bio Ecol 72:233–241

    Article  CAS  Google Scholar 

  • Schroeder GL (1987) Carbon and nitrogen budgets in manured fish ponds on Israel’s coastal plain. Aquaculture 62:259–279

    Article  Google Scholar 

  • Schroeder L (1990) The dominance of algal-based food webs in fish ponds receiving chemical fertilizers plus organic manures. Aquaculture 86:219–229

    Article  Google Scholar 

  • Schryver PD, Vadstein O (2014) Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J 8:2360–2368

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi C, Dong SL, Wang F et al (2013) Effects of four fresh microalgae in diet on growth and energy budget of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture 416–417:296–301

    Article  Google Scholar 

  • Shigeno K (1978) Problems in prawn culture. Amerind Publishing Co, New Dehli, p 103

    Google Scholar 

  • Sriprapat W, Kullavanijaya S, Techkarnjanaruk S et al (2011) Diethylene glycol removal by Echinodorus cordifolius (L.): the role of plant-microbe interactions. J Hazard Mater 185(2-3):1066–1072

    Article  CAS  PubMed  Google Scholar 

  • Sundby BC, Gobeil N, Silverberg N et al (1992) The phosphorus cycle in costal marine sediments. Limnol Oceanogr 37:1129–1145

    Article  CAS  Google Scholar 

  • Valiela I (1995) Marine ecological processes, 2nd edn. Springer-Verlag, Inc, New York

    Book  Google Scholar 

  • Xia HL, Wu LH, Tao QN (2002) Phytoremediation of methyl parathion by water hyacinth (Eichhornia crassipes Solms). Acta Science Circumst 22(3):229–332. (in Chinese with English abstract)

    Google Scholar 

  • Xu JR, Wang YS, Yin JP et al (2005b) Transformation of dissolved inorganic nitrogen and nitrification and denitrification processes in the near sea section of Zhujiang river. Acta Sci Circumst 25(5):686–692. (in Chinese with English abstract)

    CAS  Google Scholar 

  • Xu JR, Wang YS, Wang QJ et al (2007a) Nitrification and denitrification in sediment of the Daya Bay. Oceanol Limnol Sin 38(3):206–211. (in Chinese with English abstract)

    CAS  Google Scholar 

  • Xu N, Li DS, Dong SL (1999) Diel balance of DO in mariculture ponds. J Fish Sci China 6(1):69–74. (in Chinese with English abstract)

    Google Scholar 

  • Yang F, Lei YZ (1998) Some characteristics of the sediment in the fish overwintering ponds. J Dalian Fish Coll 13(3):1–8. (in Chinese with English abstract)

    CAS  Google Scholar 

  • Yin J, Wen Y, Zhou Q (2007) Progress of microbial ecology in constructed wetlands. Environ Sci Technol 30(1):108–111. (in Chinese)

    Google Scholar 

  • Zhang CX (2013a) Characteristics in water-sediment and remediation in intensive ponds sediment. Master Thesis of Huazhong Agricultural University, Wuhan, China. (in Chinese with English abstract)

    Google Scholar 

  • Zhang FR (2002) Soil Geography. China Agriculture Press, Beijing, p 347. (in Chinese)

    Google Scholar 

  • Zhang JW (2012a) Study on the oxygen budgets of grass carp ponds and its critical impact factors. Master Thesis of Shanghai Ocean University, Shanghai, China. (in Chinese)

    Google Scholar 

  • Zhang ZN, Yu ZS, Duan RQ et al (1994) A study on Neanthes Japonica (Izuka) larval development, density, and settlement during the season of bring tidal flow into shrimp pond. Oceanol Limnol Sin 25(3):248–258. (in Chinese with English abstract)

    Google Scholar 

  • Zhao L, Wang F, Sun D et al (2011a) Distribution of nutrients in the pore water and overlying water in Grass carp Ctenopharyngodon idellus polyculture system. Progress Fish Sci 32:70–77. (in Chinese with English abstract)

    Google Scholar 

  • Zheng ZM (2009) Study on nutrient fluxes across sediment-water interface in sea cucumber culture ponds. PhD Dissertation of Ocean University of Qingdao, Qingdao, China. (in Chinese with English abstract)

    Google Scholar 

  • Zheng ZM, Dong SL, Tian XL et al (2009) Sediment-water fluxes of nutrients and dissolved organic carbon in extensive sea cucumber culture ponds. Clean-Water Air Soil 37(3):218–224

    Article  CAS  Google Scholar 

  • Zhou XX, Wang ZW (2011) Modified measures of acid pond. Chin Aquac 10:41–42. (in Chinese)

    Google Scholar 

  • Zhou YB, Liu YJ (2000) Primary analysis of the energy budget and flow in the shrimp pond ecosystem. Acta Ecol Sin 20(3):471–481. (in Chinese with English abstract)

    Google Scholar 

  • Zhou Y, Yang HS, He YC (2001b) A modelling estimation of biodeposition for Chlamys farreri in Sishiliwan Bay, Yantai, China. In: Transactions of the Chinese Society of Malacology IV. China Ocean Press, Beijing, pp 99–111. (in Chinese)

    Google Scholar 

  • Zhou Y, Yang HS, Mao YZ et al (2003a) Biodeposition by the Zhikong Scallop Chlamys farreri in Sanggou Bay, Shandong Province, China. Chin J Zool 38(4):40–44. (in Chinese with English abstract)

    Google Scholar 

  • Zhou Y, Yang HS, Zhang FS (2003b) Biodeposition by seawater bivalve mollusk. Mar Sci 2:23–26. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang-Lin Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dong, SL., Li, L. (2023). Sediment and Remediation of Aquaculture Ponds. In: Dong, SL., Tian, XL., Gao, QF., Dong, YW. (eds) Aquaculture Ecology. Springer, Singapore. https://doi.org/10.1007/978-981-19-5486-3_8

Download citation

Publish with us

Policies and ethics