Skip to main content

Analysis and Evaluation of Pre-processing Techniques for Fault Detection in Thermal Images of Solar Panels

  • Conference paper
  • First Online:
Emerging Research in Computing, Information, Communication and Applications

Abstract

Majority of solar panel thermal images require post-acquisition manipulations for optimization of contrast, brightness, and noise removal. Noise removal and contrast improvement are major part of pre-processing operations. Thermal imaging is one of the non-contact techniques used for fault detection in solar panels. Thermal images captured through thermal camera are often corrupted with noise due to various environmental conditions. Use of suitable denoising filter is an essential pre-processing step in case of thermal imaging. In this paper, various digital filters such as Gaussian, median, bilateral, mean, and Wiener filter are tested for removal of noise. The performance of these filters is evaluated using statistical measures such as mean square errorĀ (MSE), structural similarity index (SSIM), signal-to-noise ratio (SNR), and peak signal-to-noise ratio (PSNR). After filtering thermal images with suitable filter, contrast must be enhanced using good histogram equalization technique. To enhance the contrast of filtered images, various histogram equalization techniques are applied. This paper proposes use of brightness preserving dynamic fuzzy histogram equalization (BPDFHE) for solar panel thermal images by comparing the performance against histogram equalization (HE), mean preserving Bi-histogram equalization (BBHE), contrastive limited adaptive equalization (CLAHE), equal area dualistic sub-image histogram equalization (DSIHE) techniques. The qualitative attributes used for evaluation are peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and absolute mean brightness error (AMBE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Prasad V, Gopal R (2016) LHM filter for removal salt and pepper with random noise in images. Int J Comput Appl 139:9ā€“15. https://doi.org/10.5120/ijca2016908962

    ArticleĀ  Google ScholarĀ 

  2. Yadav RB, Srivastava S, Srivastava R (2017) Identification and removal of different noise patterns by measuring SNR value in magnetic resonance images. In: 2016 9th international conference on contemporary computing, IC3 2016, pp 9ā€“13. https://doi.org/10.1109/IC3.2016.7880212

  3. Tania S, Rowaida R (2016) A comparative study of various image filtering techniques for removing various noisy pixels in aerial image. Int J Signal Process Image Process Pattern Recognit 9:113ā€“124. https://doi.org/10.14257/ijsip.2016.9.3.10

  4. Khetkeeree S, Thanakitivirul P (2020) Hybrid filtering for image sharpening and smoothing simultaneously. In: ITC-CSCC 2020ā€”35th international technical conference on circuits/systems, computers and communications, pp 367ā€“371

    Google ScholarĀ 

  5. Isa IS, Sulaiman SN, Mustapha M, Darus S (2015) Evaluating denoising performances of fundamental filters for T2-weighted MRI images. Procedia Comput Sci 60:760ā€“768. https://doi.org/10.1016/j.procs.2015.08.231

    ArticleĀ  Google ScholarĀ 

  6. Hoshyar AN, Al-Jumaily A, Hoshyar AN (2014) Comparing the performance of various filters on skin cancer images. Procedia Comput Sci 42:32ā€“37. https://doi.org/10.1016/j.procs.2014.11.030

    ArticleĀ  Google ScholarĀ 

  7. Srivastava C et al (2013) Performance comparison of various filters and wavelet transform for image de-noising. IOSR J Comput Eng 10:55ā€“63. https://doi.org/10.9790/0661-01015563

  8. Janaki K, Madheswaran M (n.d.) Performance analysis of different filters with various noises in preprocessing of images. Int J Adv Netw Appl 372ā€“376

    Google ScholarĀ 

  9. Kumar MP, Murthy PHST, Kumar PR (2011) Performance evaluation of different image filtering algorithms using image quality assessment. Int J Comput Appl 18:20ā€“22. https://doi.org/10.5120/2289-2972

    ArticleĀ  Google ScholarĀ 

  10. Dwivedy P, Potnis A, Soofi S, Giri P (2018) Performance comparison of various filters for removing different image noises. In: International conference on recent innovations in signal processing and embedded systems, RISE 2017, Jan 2018, pp 181ā€“186. https://doi.org/10.1109/RISE.2017.8378150

  11. Varghese J (2013) Literature survey on image filtering techniques. Int J Comput Appl Technol Res 2:286ā€“288. https://doi.org/10.7753/ijcatr0203.1014

  12. Wahab AA, Salim MIM, Yunus J, Ramlee MH (2018) Comparative evaluation of medical thermal image enhancement techniques for breast cancer detection. J Eng Technol Sci 50:40ā€“52

    Google ScholarĀ 

  13. Garg S, Vijay R, Urooj S (2019) Statistical approach to compare image denoising techniques in medical MR images. Procedia Comput Sci 152:367ā€“374. https://doi.org/10.1016/j.procs.2019.05.004

    ArticleĀ  Google ScholarĀ 

  14. Paudel S, Rijal R (2015) Performance analysis of spatial and transform filters for efficient image noise reduction

    Google ScholarĀ 

  15. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: IEEE international conference on computer vision. https://doi.org/10.1677/joe.0.0930177

  16. Umamaheswari D, Karthikeyan E (2019) Comparative analysis of various filtering techniques in image processing. Int J Sci Technol Res 8:109ā€“114

    Google ScholarĀ 

  17. Zeng M, Li Y, Meng Q, Yang T, Liu J (2012) Improving histogram-based image contrast enhancement using gray-level information histogram with application to X-ray images. Optik (Stuttg) 123:511ā€“520. https://doi.org/10.1016/j.ijleo.2011.05.017

    ArticleĀ  Google ScholarĀ 

  18. Akila K, Jayashree LS, Vasuki A (2015) Mammographic image enhancement using indirect contrast enhancement techniquesā€”a comparative study. Procedia Comput Sci 47:255ā€“261. https://doi.org/10.1016/j.procs.2015.03.205

    ArticleĀ  Google ScholarĀ 

  19. Cheng HD, Shi XJ (2004) A simple and effective histogram equalization approach to image enhancement. Digit Signal Process 14:158ā€“170. https://doi.org/10.1016/j.dsp.2003.07.002

    ArticleĀ  Google ScholarĀ 

  20. Lu L, Zhou Y, Panetta K, Agaian S (2010) Comparative study of histogram equalization algorithms for image enhancement. In: Mobile multimedia/image processing, security, and applications 2010, vol 7708, pp 770811-1ā€“770811-11. https://doi.org/10.1117/12.853502

  21. Suryavamsi RV, Reddy LST, Saladi S, Karuna Y (2018) Comparative analysis of various enhancement methods for astrocytoma MRI images. In: Proceedings of the 2018 IEEE international conference on communication and signal processing ICCSP 2018, vol 1, pp 812ā€“816. https://doi.org/10.1109/ICCSP.2018.8524441

  22. Senthilkumaran N, Thimmiaraja J (2014) Histogram equalization for image enhancement using MRI brain images. In: Proceedings of 2014 world congress on computing and communication technologies WCCCT 2014, pp 80ā€“83. https://doi.org/10.1109/WCCCT.2014.45

  23. Pizer SM, Johnston RE, Ericksen JP, Yankaskas BC, Muller KE (1990) Contrast-limited adaptive histogram equalization: speed and effectiveness. In: Proceedings of the first conference on visualization in biomedical computing, pp 337ā€“345. https://doi.org/10.1109/vbc.1990.109340

  24. Gupta S, Gupta R, Singla C (2017) Analysis of image enhancement techniques for astrocytoma MRI images. Int J Inf Technol 9:311ā€“319. https://doi.org/10.1007/s41870-017-0033-8

    ArticleĀ  Google ScholarĀ 

  25. Raj D, Mamoria P (2016) Comparative analysis of contrast enhancement techniques on different images. In: Proceedings of 2015 international conference on green computing and internet of things, ICGCIoT 2015, pp 27ā€“31. https://doi.org/10.1109/ICGCIoT.2015.7380422

  26. Kim YT (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron 43:1ā€“8. https://doi.org/10.1109/30.580378

    ArticleĀ  Google ScholarĀ 

  27. Wang Y, Chen Q, Zhang B (1999) Image enhancement based on equal area dualistic sub-image and non-parametric modified histogram equalization method. IEEE Trans Consum Electron 45:68ā€“75. https://doi.org/10.1109/30.754419

  28. Sheet D, Garud H, Suveer A, Mahadevappa M, Chatterjee J (2010) Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans Consum Electron 56:2475ā€“2480. https://doi.org/10.1109/TCE.2010.5681130

    ArticleĀ  Google ScholarĀ 

  29. Garud H, Sheet D, Suveer A, Krishna Karri P, Ray AK, Mahadevappa M, Chatterjee J (2011) Brightness preserving contrast enhancement in digital pathology. In: ICIIP 2011ā€”proceedings of 2011 international conference on image information processing. https://doi.org/10.1109/ICIIP.2011.6108964

  30. Bovik A, Wang Z, Sheikh H (2005) Structural similarity based image quality assessment, pp 225ā€“241. https://doi.org/10.1201/9781420027822.ch7

Download references

Acknowledgements

Authors would like to thank PV Diagnostics Ltd. Mumbai for providing thermal images of solar panel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata P. Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pathak, S.P., Patil, S.A. (2023). Analysis and Evaluation of Pre-processing Techniques for Fault Detection in Thermal Images of Solar Panels. In: Shetty, N.R., Patnaik, L.M., Prasad, N.H. (eds) Emerging Research in Computing, Information, Communication and Applications. Lecture Notes in Electrical Engineering, vol 928. Springer, Singapore. https://doi.org/10.1007/978-981-19-5482-5_59

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5482-5_59

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5481-8

  • Online ISBN: 978-981-19-5482-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics