Skip to main content

Effect of Deforestation and Forest Fragmentation on Ecosystem Services

  • Chapter
  • First Online:
Land Degradation Neutrality: Achieving SDG 15 by Forest Management

Abstract

Deforestation has become a major hurdle nowadays that affects overall ecosystem health and functioning. Illegal timber cutting, logging, mining, and many developmental projects deprive the land quality, soil health, and many other ecosystem services. Forest-mediated ecosystem services maintain environmental health and sustainability. A well-managed forest maximizes biodiversity and strengthens ecosystem services and leads toward ecological stability. Forest fragmentation is also going in parallel that affects floral and faunal distributions, diversity, and related ecosystem services. These activities affect soil health by declining soil fertility and soil organic carbon pools in the forests. Intensive agriculture practices and agricultural land expansion promote forest cutting that affects overall land productiveness. These unsustainable land-use practices minimize forest covers along with releasing many greenhouse gases into the atmosphere leading to climate change. In this context, applying scientific management and protection of forests will ensure healthy, productive, and diverse species in the tropical world. Sustainable forest management will minimize forest degradation and maximize the population and diversity of flora and fauna that ensure healthy ecosystem services. Thus, adopting an effective policy along with better research and development would help in enhancing forest regeneration and species diversity with a healthy and productive ecosystem. Also, a regulatory framework and future roadmap must be framed for forest conservation that guarantees soil and food security along with climate and environmental sustainability for ecological stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andréassian V (2004) Waters and forests: from historical controversy to scientific debate. J Hydrol 291:1–27

    Article  Google Scholar 

  • Arrow KJ, Dasgupta P, Goulder LH, Mumford KJ, Oleson K (2012) Sustainability and the measurement of wealth. Environ Dev Econ 17:317–353

    Article  Google Scholar 

  • Ausubel JH, Wernick IK, Waggoner PE (2012) Peak farmland and the prospect for land sparing. Popul Dev Rev 38:217–238

    Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2020) Environmental and sustainable development through forestry and other resources. Apple Academic Press Inc., CRC Press- a Tayler and Francis Group, US/Canada, p 400

    Book  Google Scholar 

  • Banerjee A, Meena RS, Jhariya MK, Yadav DK (2021) Agroecological footprints management for sustainable food system. Springer Nature, Singapore, p 514. https://doi.org/10.1007/978-981-15-9496-0

    Book  Google Scholar 

  • Basnayat B (2009) Impacts of demographic changes on forests and forestry in Asia and the Pacific. In: Working Paper of the Asia-Pacific Forestry Sector Outlook Study (APFSOS II). FAO of the United Nations, Bangkok

    Google Scholar 

  • Bologna M, Aquino G (2020) Deforestation and world population sustainability: a quantitative analysis. Sci Rep 10:7631. https://doi.org/10.1038/s41598-020-63657-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch JM, Hewlett J (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23

    Article  Google Scholar 

  • Bryan-Brown DN, Connolly RM, Richards DR, Adame F, Friess DA, Brown CJ (2020) Global trends in mangrove forest fragmentation. Sci Rep 10:7117. https://doi.org/10.1038/s41598-020-63880-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton PJ, Bergeron Y, Bogdansky BEC, Juday GP, Kuuluvainen T, McAfee BJ, Ogden A, Teplyakov VK, Alfaro RI, Francis DA, Gauthier S, Hantula J (2010) Sustainability of boreal forests and forestry in a changing environment. In: Mery G, Katila P, Galloway G, Alfaro R, Kanninen M, Lobovikov M, Varjo J (eds) Forests and society – responding to global drivers of change, IUFRO World Series, vol 25. International Union of Forest Research Organizations, Vienna, pp 249–282

    Google Scholar 

  • Chakravarty S, Ghosh SK, Suresh CP, Dey AN, Shukla G (2012) Deforestation: causes, effects and control strategies. In: Clement AO (ed) Global perspectives on sustainable Forest management. InTech, China, pp 3–28

    Google Scholar 

  • Contreras-Hermosilla A (2000) The underlying causes of forest decline CIFOR Occasional Paper No 30. pp. 1–25

    Google Scholar 

  • Costa MH, Pires GF (2010) Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int J Climatol 30(13):1970–1979. https://doi.org/10.1002/joc.2048

    Article  Google Scholar 

  • Cuesta F, Peralvo M, Baquero F, Bustamante M, Merino A, Muriel P, Freile J, Torres O (2015) Áreas Prioritarias para la Conservación del Ecuador Continental. Ministerio del Ambiente, CONDESAN, Pontificia Universidad Católica del Ecuador, GIZ, Quito, Ecuador, p 109

    Google Scholar 

  • Dale VH (2007) Measures of the effect of agriculture practices on ecosystem services. Ecol Econ 64:286–296

    Article  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40(9):1649–1663

    Article  Google Scholar 

  • FAO (2006) Global Forest Resources Assessment 2005. Italy, Rome

    Google Scholar 

  • FAO (2009) Situación de los bosques del mundo. FAO, Rome

    Google Scholar 

  • FAO (2010) Global forest resources assessment full report. FAO forestry paper 163. FAO, Rome

    Google Scholar 

  • FAO (2011) The state of forests in the Amazon Basin, Congo Basin, and Southeast Asia. A report prepared for the summit of the three rainforest basins. FAO, Rome, pp 1–80

    Google Scholar 

  • FAO (2015) Global forest resources assessment. Food and Agriculture Organization of the United Nations, Rome, pp 1–244

    Google Scholar 

  • Fardila D, Kelly LT, Moore JL, McCarthy MA (2017) A systematic review reveals changes in where and how we have studied habitat loss and fragmentation over 20 years. Biol Conserv 212:130–138

    Article  Google Scholar 

  • Filoso S, Bezerra MO, Weiss KCB, Palmer MA (2017) Impacts of forest restoration on water yield: a systematic review. PLoS One 12:1–26

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • Fuhrer E (2000) Forest functions, ecosystem stability and management. For Ecol Manag 132:29–38

    Article  Google Scholar 

  • Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340

    Article  PubMed  Google Scholar 

  • Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA, Peres CA, Sodhi NS (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecol Lett 12(6):561–582

    Article  PubMed  Google Scholar 

  • Gharibreza M, Ashraf MA (2014) Applied limnology. Springer, Tokyo/Heidelborg/New York/Dordrecht/London

    Book  Google Scholar 

  • Gharibreza M, Raj JK, Yusoff I, Othman Z, Tahir WZWM, Ashraf MA (2013) Land use changes and soil redistribution estimation using 137Cs in the tropical Bera Lake catchment, Malaysia. Soil Tillage Res 131:1–10

    Article  Google Scholar 

  • Gharibreza M, Zaman M, Porto P, Fulajtar E, Parsaei L, Eisaei H (2020) Assessment of deforestation impact on soil erosion in loess formation using 137Cs method (case study: Golestan Province, Iran). Int Soil Water Conserv Res 8(4):393–405

    Article  Google Scholar 

  • Gibson L, Lynam AJ, Bradshaw CJA, He F, Bickford DP, Woodruff DS, Bumrungsri S, Laurance WF (2013) Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341(6153):1508–1510

    Article  CAS  PubMed  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st century forest cover change. Science 850:850–854

    Article  Google Scholar 

  • Hosonuma N, Herold M, De Sy D, De Fries RS, Brockhaus M, Verchot L, Angelsen A, Romijn E (2012) An assessment of deforestation and forest degradation drivers in developing countries. Environ Res Lett 7:044009

    Article  Google Scholar 

  • Jhariya MK, Singh L (2021a) Herbaceous diversity and biomass under different fire regimes in a seasonally dry forest ecosystem. Environ Dev Sustain 23(5):6800–6818

    Article  Google Scholar 

  • Jhariya MK, Singh L (2021b) Effect of fire severity on soil properties in a seasonally dry forest ecosystem of Central India. Int J Environ Sci Technol 8:1–12

    Google Scholar 

  • Jhariya MK, Singh L (2021c) Productivity and carbon accumulation in tropical dry deciduous forest ecosystem. In: Chaturvedi RK, Singh R, Bhadouria R (eds) Tropical dry forests: emerging features and ecological perspectives. Nova Science, New York, pp 269–287

    Google Scholar 

  • Jhariya MK, Banerjee A, Meena RS, Yadav DK (2019a) Sustainable agriculture, forest and environmental management. Springer Nature, Singapore, p 606. https://doi.org/10.1007/978-981-13-6830-1

    Book  Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2019b) Agroforestry and climate change: issues and challenges. Apple Academic Press Inc., CRC Press-a Taylor and Francis Group, US/Canada, p 335

    Book  Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A, Raj A, Meena RS (2019c) Sustainable forestry under changing climate. In: Jhariya MK et al (eds) Sustainable agriculture, forest and environmental management. Springer Nature, Singapore, pp 285–325

    Chapter  Google Scholar 

  • Jhariya MK, Meena RS, Banerjee A (2021a) Ecological intensification of natural resources for sustainable agriculture. Springer Nature, Singapore, p 655. https://doi.org/10.1007/978-981-33-4203-3

    Book  Google Scholar 

  • Jhariya MK, Banerjee A, Meena RS, Kumar S, Raj A (2021b) Sustainable intensification for agroecosystem services and management. Springer Nature, Singapore. https://doi.org/10.1007/978-981-16-3207-5

    Book  Google Scholar 

  • Jhariya MK, Raj A, Banerjee A, Meena RS (2021c) Eco-designing for sustainability. In: Jhariya MK, Meena RS, Banerjee A (eds) Ecological intensification of natural resources for sustainable agriculture. Springer, Singapore, pp 565–595

    Chapter  Google Scholar 

  • Jhariya MK, Meena RS, Banerjee A, Meena SN (2022) Natural resources conservation and advances for sustainability. Elsevier, Academic Press

    Google Scholar 

  • Karamage F, Shao H, Chen X, Ndayisaba F, Nahayo L, Kayiranga A, Omifolaji JK, Liu T, Zhang C (2016) Deforestation effects on soil erosion in the Lake Kivu Basin, D.R. Congo-Rwanda. Forests 7:281

    Article  Google Scholar 

  • Kasaro D, Phir E, Nyambe I (2019) Deforestation impact on ecosystem services in Kamfinsa sub-catchment of Kafue River Basin in Zambia. African J Env Sci Technol 11(4):33–45

    Google Scholar 

  • Keenan RJ, Reams GA, Achard F, De Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO global forest resources assessment 2015. For Ecol Manag 352:9–20

    Article  Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020a) Herbaceous dynamics and CO2 mitigation in an urban setup- a case study from Chhattisgarh, India. Environ Sci Poll Res 27(3):2881–2897

    Article  CAS  Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020b) Structure, diversity and ecological function of shrub species in an urban setup of Sarguja, Chhattisgarh, India. Environ Sci Poll Res 27(5):5418–5432

    Article  CAS  Google Scholar 

  • Khan N, Jhariya MK, Raj A, Banerjee A, Meena RS (2021) Soil carbon stock and sequestration: implications for climate change adaptation and mitigation. In: Jhariya MK, Meena RS, Banerjee A (eds) Ecological intensification of natural resources for sustainable agriculture. Springer, Singapore, pp 461–489

    Chapter  Google Scholar 

  • Khan N, Jhariya MK, Raj A (2022) Urban greening toward sustainable development and sustainability. In: Ozturk M, Khan SM, Altay V, Efe R, Egamberdieva D, Khassanov FO (eds) Biodiversity, conservation and sustainability in Asia, South and Middle Asia, vol 2. Springer, Switzerland, pp 345–373. 252

    Chapter  Google Scholar 

  • Kindu M, Schneider T, Teketay D, Knoke T (2013) Land use/land cover change analysis using object-based classification approach in Munessa-Shashemene landscape of the Ethiopian highlands. Remote Sens 5(5):2411–2435

    Article  Google Scholar 

  • Kissinger G, Herold M, De-Sy V (2012) Drivers of deforestation and Forest degradation: a synthesis report for REDD+ policymakers. Lexeme Consulting, Vancouver, BC, pp 1–47

    Google Scholar 

  • Kobayashi Y, Okada K, Mori AS (2019) Reconsidering biodiversity hotspots based on the rate of historical land-use change. Biol Conserv 233:268–275

    Article  Google Scholar 

  • Kozak J, Ziółkowska E, Vogt P, Dobosz M, Kaim D, Kolecka N, Ostafin K (2018) Forest-cover increase does not trigger forest-fragmentation decrease: case study from the polish Carpathians. Sustain 10(5):1472

    Article  Google Scholar 

  • Krishna PH, Saranya KRL, Reddy CS, Jha CS, Dadhwal VK (2014) Assessment and monitoring of deforestation from 1930 to 2011 in Andhra Pradesh, India using remote sensing and collateral data. Curr Sci 107(5):867–875

    Google Scholar 

  • Kumari R, Banerjee A, Kumar R, Kumar A, Saikia P, Khan ML (2019) Deforestation in India: Consequences and Sustainable Solutions. In: Suratman MN, Latif ZA, De Oliveira G, Brunsell N, Shimabukuro Y, Santos CACD (eds) Forest Degradation Around the World. Intech Open, pp 1–18

    Google Scholar 

  • Lemke P, Ren JF, Alley R, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas R, Zhang T (2007) IPCC, 2007. Climate Change 2007. Synthesis report. Contribution of working groups I, II & III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva

    Google Scholar 

  • Leßmeister A, Heubach K, Lykke AM, Thiombiano A, Wittig R, Hahn K (2018) The contribution of non-timber forest products (NTFPs) to rural household revenues in two villages in South-Eastern Burkina Faso. Agrofor Syst 92:139–155

    Article  Google Scholar 

  • Lewis LS (2006) Tropical forests and the changing earth system. Philos Trans Royal Soc London B 361:195–210

    Article  Google Scholar 

  • MAE (2017) Deforestación del Ecuador Continental Periodo 2014-2016. Ministry of Environment, Quito, Ecuador, pp 1–37

    Google Scholar 

  • Medvigy D, Walko RL, Otte MJ, Avissar R (2013) Simulated changes in northwest US climate in response to Amazon deforestation. J Clim 26(22):9115–9136

    Article  Google Scholar 

  • Meena RS, Yadav A, Kumar S, Jhariya MK, Jatav SS (2022) Agriculture ecosystem models for CO2 sequestration, improving soil physicochemical properties, and restoring degraded land. Ecol Eng 176:106546

    Article  Google Scholar 

  • Miettinen J, Shi C, Liew SC (2011) Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob Chang Biol 17:2261–2270

    Article  Google Scholar 

  • MoEF (2002) Sustainable development- learning’s and perspectives from India. Ministry of Environment and Forest (MoEF), Government of India. http://envfor.nic.in/divisions/ic/wssd/doc4/main.htm

  • MoEF (2007) Interim country report- India for United Nations Forum on Forest (UNFF-II). Ministry of Environment and Forest (MoEF), Government of India. http://envfor.nic.in/nfap/Unff2.pdf

  • Morales-Hidalgo D, Oswalt S, Somanathan E (2015) Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the global Forest resources assessment 2015. For Ecol Manag 352:68–77

    Article  Google Scholar 

  • Mori AS, Lertzman KP, Gustafsson L (2017) Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. J Appl Ecol 54:12–27

    Article  Google Scholar 

  • Nagdeve DA (2007) Population growth and environmental degradation in India. Asian Pacific J Environ Dev 14:41–63

    Google Scholar 

  • Nagendra H (2008) Do parks work? Impact of protected areas on land cover clearing. Ambio 37:330–337

    Article  PubMed  Google Scholar 

  • Nahayo L, Li L, Kayiranga A, Karamage F, Mupenzi C, Ndayisaba F, Nyesheja EM (2016) Agricultural impact on environment and counter measures in Rwanda. Afr J Agric Res 11:2205–2212

    Article  CAS  Google Scholar 

  • Noguez AM, Escalante AE, Forney LJ, Mendoza MN, Rosas I, Souza V, Oliva FG (2008) Soil aggregates in a tropical deciduous forest: effects on C and N dynamics, and microbial communities as determined by t-FLPs. Biogeochemistry 89:209–220

    Article  CAS  Google Scholar 

  • Paul R, Banerjee K (2020) Deforestation and forest fragmentation in the highlands of eastern Ghats, India. J For Res 32:1127–1138

    Article  Google Scholar 

  • Pawar GV, Singh L, Jhariya MK, Sahu KP (2014) Effect of anthropogenic disturbances on biomass and carbon storage potential of a dry tropical Forest in India. J Appl Nat Sci 6(2):383–392

    Article  Google Scholar 

  • Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330(6010):1496–1501. https://doi.org/10.1126/science.1196624

    Article  CAS  PubMed  Google Scholar 

  • Postel SL, Thompson BH (2005) Watershed protection: capturing the benefits of nature’s water supply services. Nat Res Forum 29(2):98–108

    Article  Google Scholar 

  • Raj A, Jhariya MK (2020) Forest for sustainable development: a wakeup call. SF J Environ Earth Sci 3(1):1038

    Google Scholar 

  • Raj A, Jhariya MK (2021a) Site quality and vegetation biomass in the tropical Sal mixed deciduous forest of Central India. Landsc Ecol Eng 17:32

    Article  Google Scholar 

  • Raj A, Jhariya MK (2021b) Carbon storage, flux and mitigation potential of tropical Sal mixed deciduous forest ecosystem in Chhattisgarh. India J Environ Manage 293(1):112829

    CAS  PubMed  Google Scholar 

  • Raj A, Jhariya MK, Harne SS (2018a) Threats to biodiversity and conservation strategies. In: Sood KK, Mahajan V (eds) Forest, climate change and biodiversity. Kalyani Publishers, New Delhi, pp 304–320

    Google Scholar 

  • Raj A, Jhariya MK, Bargali SS (2018b) Climate smart agriculture and carbon sequestration. In: Pandey CB, Gaur MK, Goyal RK (eds) Climate change and agroforestry: adaptation mitigation and livelihood security. New India Publishing Agency (NIPA), New Delhi, pp 1–19

    Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A (2020) Forest for resource management and environmental protection. In: Banerjee A, Jhariya MK, Yadav DK, Raj A (eds) Environmental and sustainable development through forestry and other resources. CRC Press Taylor & Francis Group, AAP, pp 1–24

    Google Scholar 

  • Raj A, Jhariya MK, Khan N (2022) The importance of forest for soil, food and climate security in Asia. In: Ozturk M, Khan SM, Altay V, Efe R, Egamberdieva D, Khassanov FO (eds) Biodiversity, conservation and sustainability in Asia, South and Middle Asia, vol 2. Springer, Switzerland, pp 33–52

    Chapter  Google Scholar 

  • Ricketts T, Watson K, Koh I, Ellis A, Nicholson C, Posner S, Sonter L (2016) Disaggregating the evidence linking biodiversity and ecosystem services. Nat Commun 7:13106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy O, Meena RS, Kumar S, Jhariya MK, Pradhan G (2022) Assessment of land use systems for CO2 sequestration, carbon credit potential and income security in Vindhyan region, India. Land Degrad Devel 33(4):670–682

    Article  Google Scholar 

  • Singh S, Mishra A (2014) Deforestation-induced costs on the drinking water supplies of the Mumbai metropolitan. India Global Environ Change 27:73–83

    Article  Google Scholar 

  • Sist P, Nascimiento F (2007) Sustainability of reduced-impact logging in the Eastern Amazon. For Ecol Manag 243:199–209

    Article  Google Scholar 

  • Smith P, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Haberl H, Harper R, House J, Jafari M, Masera O, Mbow C, Ravindranath NH, Rice CW, Robledo Abad C, Romanovskaya A, Sperling F, Tubiello F (2014) Agriculture, forestry and other land use (AFOLU). In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth AssessmentReport of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, NY

    Google Scholar 

  • West T, Vidal E, Putz F (2014) Forest biomass recovery after conventional and reduced-impact logging in Amazonian Brazil. For Ecol Manag 314:59–63

    Article  Google Scholar 

  • Yadav VS, Gupta SR, Yadav SS, Meena RS, Lal R, Sheoran NS, Jhariya MK (2022) Carbon sequestration potential and CO2 fluxes in a tropical forest ecosystem. Ecol Eng 176:106541

    Article  Google Scholar 

  • Zambrano J, Cordeiro NJ, Garzon-Lopez C, Yeager L, Fortunel C, Ndangalasi HJ, Beckman NG (2020) Investigating the direct and indirect effects of forest fragmentation on plant functional diversity. PLoS One 15(7):e0235210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zongo B, Zongo F, Toguyeni A, Boussim JI (2017) Water quality in forest and village ponds in Burkina Faso (Western Africa). J For Res 28:1039–1048

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raj, A., Jhariya, M.K., Khan, N., Nema, S., Devi, A., Ghanshyam (2022). Effect of Deforestation and Forest Fragmentation on Ecosystem Services. In: Panwar, P., Shukla, G., Bhat, J.A., Chakravarty, S. (eds) Land Degradation Neutrality: Achieving SDG 15 by Forest Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-5478-8_2

Download citation

Publish with us

Policies and ethics