Skip to main content

Abstract

Neonatal ventilation is an integral component of advanced neonatal support. Understanding the complex and distinct neonatal physiology is essential for the health professionals involved in care of the extremely premature or critically sick neonates to implement the best practice based on evidence. Given the range of existing and newer modes of ventilation available, clinical decision-making is vitally important in a wider perspective of neonatal care. The core aim of ventilation strategy is to provide respiratory interventions during a compromise to maximize survival while limiting adverse effects. Neonates are at a high risk for respiratory complications during anaesthesia and surgery because of their characteristic respiratory physiology of a delicate balance between the closing volume and functional residual capacity (FRC) and still on-going adaptation adjustments to the extra uterine environment.

Mechanical ventilation (MV) is not without its long term consequences and is considered as a primary risk factor for developing bronchopulmonary dysplasia (BPD), respiratory distress syndrome (RDS), reopening of intracardiac shunts, persistence of fetal circulation and pulmonary hypertension (PHT). Hence babies with an acceptable spontaneous respiratory efforts are now encouraged for non-invasive respiratory support. A ventilatory strategy of low tidal volume with optimum PEEP, and avoidance of excessive O2 administration, may be warranted in parenchymal lung disease. Mild permissive hypercapnia provides modest clinical benefits in selected situations and it is important to avoid large fluctuations in arterial carbon dioxide (PaCO2) levels. Decreasing the duration of MV and early weaning may be important for minimizing pulmonary damage, neurodevelopmental disability and high morbidity and mortality associated with prolonged MV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Picheta R. World’s smallest known baby at birth, who weighed 7.5 ounces, leaves hospital; August 2021. https://edition.cnn.com/2021/08/10/asia/kwek-yu-xuan-baby-leaves-hospital-scli-intl/index.html

  2. Singh GK, Yu SM. Infant mortality in the United States: trends, differentials, and projections, 1950 through 2010. Am J Public Health. 1995;85(7):957–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Heron M, Sutton PD, Xu J, Ventura SJ, et al. Annual summary of vital statistics. Pediatrics. 2010;125(1):4–15.

    Article  PubMed  Google Scholar 

  4. Pillow JJ, Stocks J, Sly PD, Hantos Z. Partitioning of airway and parenchymal mechanics in unsedated newborn infants. Pediatr Res. 2005;58(6):1210–5.

    Article  PubMed  Google Scholar 

  5. Chakkarapani AA, Adappa R, Mohammad Ali SK, et al. “Current concepts of mechanical ventilation in neonates”—Part 1: Basics. Int J Pediatr Adolesc Med. 2020;7(1):13–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Montazami NS, Abubakar KM, Keszler M. The impact of instrumental dead-space in volume-targeted ventilation of the extremely low birth weight (ELBW) infant. Pediatr Pulmonol. 2009;44(2):128–33.

    Article  Google Scholar 

  7. Martin K, Abudakar KM. Physiologic principles. In Assisted ventilation of the neonate 2011, pp. 19–46.

    Google Scholar 

  8. Brown MK, DiBlasi RM. Mechanical ventilation of the premature neonate. Respir Care. 2011;56(9):1298–313.

    Article  PubMed  Google Scholar 

  9. Attar MA, Donn SM. Mechanisms of ventilator-induced lung injury in premature infants. Semin Neonatol. 2002;7(5):353–60.

    Article  PubMed  Google Scholar 

  10. Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med. 1998;157(1):294–323.

    Article  PubMed  CAS  Google Scholar 

  11. Protti A, Andreis DT, Milesi M, Iapichino GE, etal. Lung anatomy, energy load, and ventilator-induced lung injury. Intensive Care Med Exp 2015;3(1):34.

    Google Scholar 

  12. Resch B, Neubauer K, Hofer N, etal. Episodes of hypocarbia and early-onset sepsis are risk factors for cystic periventricular leukomalacia in preterm infant. Early Hum Dev. 2012; 88(1):27-31.

    Google Scholar 

  13. Saugstad OD, Sejersted Y, Solberg R, Wollen EJ, Bjørås M. Oxygenation of the newborn: a molecular approach. Neonatology. 2012;101(4):315–25.

    Article  PubMed  CAS  Google Scholar 

  14. Baraldi E, Filippone M. Chronic lung disease after premature birth. N Engl J Med. 2007;357(19):1946–55.

    Article  PubMed  CAS  Google Scholar 

  15. Stenson BJ, Tarnow-Mordi WO, Darlow BA, Simes J, etal, BOOST II United Kingdom Collaborative Group; BOOST II Australia Collaborative Group; BOOST II New Zealand Collaborative Group, Oxygen saturation and outcomes in preterm infants. N Engl J Med 2013; 30;368(22):2094-2104.

    Google Scholar 

  16. Vervenioti A, Fouzas S, Tzifas S, Karatza AA, Dimitriou G. Work of breathing in mechanically ventilated preterm neonates. Pediatr Crit Care Med. 2020;(5):430–6.

    Google Scholar 

  17. Ozer EA. Lung-protective ventilation in neonatal intensive care unit. J Clin Neonatol. 2020;9:1–7.

    Article  Google Scholar 

  18. Patel DS, Sharma A, Prendergast M, Rafferty GF, Greenough A. Work of breathing and different levels of volume-targeted ventilation. Pediatrics. 2009;123(4):e679–84.

    Article  PubMed  Google Scholar 

  19. Sternberg UBS, Regli A, Schibler A, Hammer J, etal. The impact of positive end-expiratory pressure on functional residual capacity and ventilation homogeneity impairment in anesthetized children exposed to high levels of inspired oxygen. Anesth Analg. 2007; 104(6):1364-1368.

    Google Scholar 

  20. Mok Q, Negus S, McLaren CA, etal. Computed tomography versus bronchography in the diagnosis and management of tracheobronchomalacia in ventilator dependent infants. Arch Dis Child Fetal Neonatal Ed 2005;90(4): F290-F293.

    Google Scholar 

  21. Sola A. Oxygen in neonatal anesthesia:friend or foe? Curr Opin Anaesthesiol. 2008;21(3):332–9.

    Article  PubMed  Google Scholar 

  22. Thome UH, Ambalavanan N. Permissive hypercapnia to decrease lung injury in ventilated preterm neonates. Semin Fetal Neonatal Med. 2009 Feb;14(1):21–7.

    Article  PubMed  Google Scholar 

  23. Meyers M, Rodrigues N, Ari A. High-frequency oscillatory ventilation: a narrative review. Can J Respir Ther. 2019;55:40–6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Herber-Jonat S, von Bismarck P, Freitag-Wolf S, etal. Limitation of measurements of expiratory tidal volume and expiratory compliance under conditions of endotracheal tube leaks. Pediatr Crit Care Med 2008; 9:69–75

    Google Scholar 

  25. Singh J, Sinha SK, Clarke P, etal. Mechanical ventilation of very low birth weight infants: is volume or pressure a better target variable? J Pediatr 2006; 149:308–313.

    Google Scholar 

  26. Chow LC, Vanderhal A, Raber J, etal. Are tidal volume measurements in neonatal pressure-controlled ventilation accurate? Pediatr Pulmonol 2002; 34:196–202

    Google Scholar 

  27. Greenough A, Rossor TE, Sundaresan A, etal. Synchronized mechanical ventilation for respiratory support in newborn infants. Cochrane Database Syst Rev 2016; 9(9):CD000456.

    Google Scholar 

  28. Patel DS, Rafferty GF, Lee S, Hannam S, Greenough A. Work of breathing during SIMV with and without pressure support. Arch Dis Child. 2009;94(6):434–6.

    Article  PubMed  Google Scholar 

  29. Claure N, Bancalari E. New modes of mechanical ventilation in the preterm newborn: evidence of benefit. Arch Dis Child Fetal Neonatal Ed. 2007;92(6):F508–12.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Klingenberg C, Wheeler KI, McCallion N, etal. Volume-targeted versus pressure limited ventilation in neonates. Cochrane Database Syst Rev 2017; 10:CD003666.

    Google Scholar 

  31. Grover A, Field D. Volume-targeted ventilation in the neonate: time to change? Arch Dis Child Fetal Neonatal Ed. 2008;93(1):F7–F13.

    Article  PubMed  CAS  Google Scholar 

  32. Klingenberg C, Wheeler KI, Davis PG, Morley CJ. A practical guide to neonatal volume guarantee ventilation. J Perinatol. 2011;31(9):575–85.

    Article  PubMed  CAS  Google Scholar 

  33. Keszler M. Update on mechanical ventilatory strategies. NeoReviews. 2013;14:e237–51.

    Article  Google Scholar 

  34. Stein H, Firestone K, Rimensberger PC. Synchronized mechanical ventilation using electrical activity of the diaphragm in neonates. Clin Perinatol. 2012;39(3):525–42.

    Article  PubMed  Google Scholar 

  35. Breatnach C, Conlon NP, Stack M, Healy M, O'Hare BP. A prospective crossover comparison of neurally adjusted ventilatory assist and pressure-support ventilation in a pediatric and neonatal intensive care unit population. Pediatr Crit Care Med. 2010;11(1):7–11.

    Article  PubMed  Google Scholar 

  36. Lee SM, Namgung R, Eun HS, Lee SM, etal. Effective tidal volume for normocapnia in very-low-birth-weight infants using high-frequency oscillatory ventilation. Yonsei Med J. 2018; 59(1): 101-106.

    Google Scholar 

  37. Watkins PL, Dagle JM, Bell EF, Colaizy TT. Outcomes at 18 to 22 months of corrected age for infants born at 22 to 25 weeks of gestation in a center practicing active management. J Pediatr. 2020;217:52–8.

    Article  PubMed  Google Scholar 

  38. Fabres J, Carlo WA, Phillips V, Howard G, Ambalavanan N. Both extremes of arterial carbon dioxide pressure and the magnitude of fluctuations in arterial carbon dioxide pressure are associated with severe intraventricular hemorrhage in preterm infants. Pediatrics. 2007;119(2):299–305.

    Article  PubMed  Google Scholar 

  39. Garland JS, Buck RK, Allred EN, Leviton A. Hypocarbia before surfactant therapy appears to increase bronchopulmonary dysplasia risk in infants with respiratory distress syndrome. Arch Pediatr Adolesc Med. 1995;149(6):617–22.

    Article  PubMed  CAS  Google Scholar 

  40. Wiswell TE, Graziani LJ, Kornhauser MS, Stanley C, etal. Effects of hypocarbia on the development of cystic periventricular leukomalacia in premature infants treated with high-frequency jet ventilation. Pediatrics 1996; 98(5):918-924.

    Google Scholar 

  41. Ryu J, Haddad G, Carlo WA. Clinical effectiveness and safety of permissive hypercapnia. Clin Perinatol. 2012;39(3):603–12.

    Article  PubMed  Google Scholar 

  42. Laffey JG, Engelberts D, Kavanagh BP. Buffering hypercapnic acidosis worsens acute lung injury. Am J Respir Crit Care Med. 2000;161(1):141–6.

    Article  PubMed  CAS  Google Scholar 

  43. Keszler M. Volume-targeted ventilation: one size does not fit all. Evidence-based recommendations for successful use. Arch Dis Child Fetal Neonatal Ed. 2019;104(1):F108–12.

    Article  PubMed  Google Scholar 

  44. McCallion N, Davis PG, Morley CJ. Volume-targeted versus pressure-limited ventilation in the neonate. Cochrane Database Syst Rev. 2005;(3):CD003666.

    Google Scholar 

  45. Abubakar K, Keszler M. Effect of volume guarantee combined with assist/control vs synchronized intermittent mandatory ventilation. J Perinatol. 2005;25:638–42.

    Article  PubMed  Google Scholar 

  46. Szakmar E, Morley CJ, Belteki G. Leak compensation during volume guarantee with the Dräger Babylog VN500 neonatal ventilator. Pediatr Crit Care Med. 2018;19(9):861–8.

    Article  PubMed  Google Scholar 

  47. Moss ML. The Velo epiglottic sphincter and obligate nose breathing in the neonate. J Pediatr. 1965;67(2):330–5.

    Article  Google Scholar 

  48. Wheeler CR, Smallwood CD. Year in review: neonatal respiratory support. Respir Care. 2019;65(5):693–704.

    Article  Google Scholar 

  49. Fischer HS, Bührer C. Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: a meta-analysis. Pediatrics. 2013;132(5):e1351–60.

    Article  PubMed  Google Scholar 

  50. Moya FR, Mazela J, Shore PM, Simonson SG, Segal R, etal. Prospective observational study of early respiratory management in preterm neonates less than 35 weeks of gestation. BMC Pediatr 2019;19(1):147.

    Google Scholar 

  51. Polin RA, Carlo WA. Committee on Fetus and Newborn; American Academy of Pediatrics. Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics. 2014;133(1):156–63.

    Article  PubMed  Google Scholar 

  52. Dransfield DA, Spitzer AR, Fox WW. Episodic airway obstruction in premature infants. Am J Dis Child. 1983;137(5):441–3.

    PubMed  CAS  Google Scholar 

  53. Nielsen KR, Ellington LE, Gray AJ, Stanberry LI, etal. Effect of high-flow nasal cannula on expiratory pressure and ventilation in infant, pediatric, and adult models. Respir Care 2018;63(2):147-157.

    Google Scholar 

  54. Lavizzari A, Colnaghi M, Ciuffini F, etal. Heated, humidified high-flow nasal cannula vs nasal continuous positive airway pressure for respiratory distress syndrome of prematurity: a randomized clinical noninferiority trial [published online ahead of print, 2016 Aug 8]. JAMA Pediatr 2016;10.1001

    Google Scholar 

  55. Fernandes CJ. Neonatal resuscitation in the delivery room. UPTODATE 2019 [URL: https://www.uptodate.com/contents/neonatal-resuscitation-in-the-delivery-room]

  56. Gonçalves RL, Tsuzuki LM, Carvalho MG. Endotracheal suctioning in intubated newborns: an integrative literature review. Rev Bras Ter Intensiva. 2015;27(3):284–92.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Carlo WA, Finer NN, Walsh MC, Rich W, Gantz MG, etal, SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 2010; 362(21):1959-1969.

    Google Scholar 

  58. Aziz K, Lee CHC, Escobedo MB, etal. Part 5: Neonatal resuscitation 2020 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Pediatrics 2021;147(Suppl 1):e2020038505E.

    Google Scholar 

  59. Fraser D. 10 Complications of positive pressure ventilation. [URL: http:// www. academyofneonatalnursing. org/NNT/Respiratory_ARC3_10ComplicationsPPV.pdf]

    Google Scholar 

  60. Kavvadia V, Greenough A, Dimitriou G. Prediction of extubation failure in preterm neonates. Eur J Pediatr. 2000;159(4):227–31.

    Article  PubMed  CAS  Google Scholar 

  61. Williams EE, Hunt KA, Jeyakara J, Subba-Rao R, etal. Electrical activity of the diaphragm following a loading dose of caffeine citrate in ventilated preterm infants. Pediatr Res. 2020; 87(4):740-744.

    Google Scholar 

  62. El Amrousy D, Elgendy M, Eltomey M, Elmashad AE. Value of lung ultrasonography to predict weaning success in ventilated neonates. Pediatr Pulmonol. 2020;55(9):2452–6.

    Article  PubMed  Google Scholar 

  63. Soummer A, Perbet S, Brisson H, Arbelot C, etal; Lung Ultrasound Study Group. Ultrasound assessment of lung aeration loss during a successful weaning trial predicts postextubation distress*. Crit Care Med. 2012; 40(7):2064-2072.

    Google Scholar 

  64. Frank L, Socenko ID, Gerdes J. Pathophysiology of lung injury repair; special features of the immature lung. In: Polin RA, Fox WW, editors. Fetal and neonatal physiology. Philadelphia: WB Saunders; 1998. p. P1175–88.

    Google Scholar 

  65. Soll RF, Morley CJ. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants (Cochrane Review). The Chochrane Library; 2002.

    Google Scholar 

  66. Cools F, Offringa M, Askie LM. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev. 2015;(3):CD000104.

    Google Scholar 

  67. Tana M, Lio A, Tirone C, Aurilia C, Tiberi E, etal. Extubation from high-frequency oscillatory ventilation in extremely low birth weight infants: a prospective observational study. BMJ Paediatr Open. 2018; 2(1):e000350.

    Google Scholar 

  68. Chang HK. Mechanisms of gas transport during ventilation by high-frequency oscillation. J Appl Physiol: Respirat Exercise Physiol. 1984;56:553–63.

    Article  CAS  Google Scholar 

  69. Ganguly A, Makkar A, Sekar K. Volume targeted ventilation and high frequency ventilation as the primary modes of respiratory support for elbw babies: what does the evidence say? Front Pediatr. 2020;8:27.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Aurilia C, Ricci C, Tana M, Tirone C, Lio A, etal. Management of pneumothorax in hemodynamically stable preterm infants using high frequency oscillatory ventilation: report of five cases. Ital J Pediatr. 2017; 43(1):114.

    Google Scholar 

  71. Mahmoud RA, Proquitté H, Fawzy N, Bührer C, Schmalisch G. Tracheal tube airleak in clinical practice and impact on tidal volume measurement in ventilated neonates. Pediatr Crit Care Med. 2011;12(2):197–202.

    Article  PubMed  Google Scholar 

  72. Newth CJ, Rachman B, Patel N, Hammer J. The use of cuffed versus uncuffed endotracheal tubes in pediatric intensive care. J Pediatr. 2004;144(3):333–7.

    Article  PubMed  Google Scholar 

  73. Calder A, Hegarty M, Erb TO, von Ungern-Sternberg BS. Predictors of postoperative sore throat in intubated children. Paediatr Anaesth. 2012;22(3):239–43.

    Article  PubMed  Google Scholar 

  74. Ong M, Chambers NA, Hullet B, Erb TO, etal. Laryngeal mask airway and tracheal tube cuff pressures in children: are clinical endpoints valuable for guiding inflation? Anaesthesia. 2008; 63(7):738-744.

    Google Scholar 

  75. Keszler M. Leaks cause problems not only in Washington politics! Has the time come for cuffed endotracheal tubes for newborn ventilation? Pediatr Crit Care Med. 2011;12:231–2.

    Article  PubMed  Google Scholar 

  76. Wallen E, Venkataraman ST, Grosso MJ, Kiene K, Orr RA. Intrahospital transport of critically ill pediatric patients. Crit Care Med. 1995;23(9):1588–95.

    Article  PubMed  CAS  Google Scholar 

  77. McKee M. Operating on critically ill neonates: the OR or the NICU. Semin Perinatol. 2004;28(3):234–9.

    Article  PubMed  Google Scholar 

  78. Wolf AR. Ductal ligation in the very low-birth weight infant: simple anesthesia or extreme art? Paediatr Anaesth. 2012;22(6):558–63.

    Article  PubMed  Google Scholar 

  79. Sternberg BS, Boda K, Chambers NA, Rebmann C, etal. Risk assessment for respiratory complications in paediatric anaesthesia: a prospective cohort study. Lancet. 2010;376(9743):773-783.

    Google Scholar 

  80. Dewhirst E, Naguib A, Tobias JD. Chest wall rigidity in two infants after low-dose fentanyl administration. Pediatr Emerg Care. 2012;28(5):465–8.

    Article  PubMed  Google Scholar 

  81. Bannister CF, Brosius KK, Wulkan M. The effect of insufflation pressure on pulmonary mechanics in infants during laparoscopic surgical procedures. Paediatr Anaesth. 2003;13(9):785–9.

    Article  PubMed  Google Scholar 

  82. Sternberg BS, Hammer J, Schibler A, etal. Decrease of functional residual capacity and ventilation homogeneity after neuromuscular blockade in anesthetized young infants and preschool children. Anesthesiology 2006; 105(4):670-675.

    Google Scholar 

  83. Mansell A, Bryan C, Levison H. Airway closure in children. J Appl Physiol. 1972;33(6):711–4.

    Article  PubMed  CAS  Google Scholar 

  84. Glenski TA, Diehl C, Clopton RG, Friesen RH. Breathing circuit compliance and accuracy of displayed tidal volume during pressure-controlled ventilation of infants: a quality improvement project. Paediatr Anaesth. 2017;27(9):935–41.

    Article  PubMed  Google Scholar 

  85. Truchon R. Anaesthetic considerations for laparoscopic surgery in neonates and infants: a practical review. Best Pract Res Clin Anaesthesiol. 2004;18(2):343–5.

    Article  PubMed  Google Scholar 

  86. Barrington KJ, Finer N, Pennaforte T, Altit G. Nitric oxide for respiratory failure in infants born at or near term. Cochrane Database Syst Rev. 2017;1(1):CD000399.

    PubMed  Google Scholar 

  87. Kinsella JP, Steinhorn RH, Mullen MP, Hopper RK, etal; Pediatric Pulmonary Hypertension Network (PPHNet). The left ventricle in congenital diaphragmatic hernia: implications for the management of pulmonary hypertension. J Pediatr 2018; 197: 17-22.

    Google Scholar 

  88. Sherlock LG, Wright CJ, Kinsella JP, Delaney C. Inhaled nitric oxide use in neonates: Balancing what is evidence-based and what is physiologically sound. Nitric Oxide. 2020;95:12–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Pant, D., Sood, J. (2023). Ventilation and Ventilatory Modes in Neonates. In: Saha, U. (eds) Clinical Anesthesia for the Newborn and the Neonate. Springer, Singapore. https://doi.org/10.1007/978-981-19-5458-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5458-0_14

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5457-3

  • Online ISBN: 978-981-19-5458-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics