Skip to main content

Development of Machine Learning Approaches for Autism Detection Using EEG Data: A Comparative Study

  • Conference paper
  • First Online:
Sentiment Analysis and Deep Learning

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1432))

  • 746 Accesses

Abstract

Autism is a kind of disorder that impacts the human brain due to which people face some difficulties in interaction and communication with others. The detection and identification of autism at an early stage are a difficult task for researchers. The preprocessing techniques include discrete wavelet transformation (DWT), standard deviation, and mean. DWT helps in preprocessing of the EEG signals, which reduces the noise and decomposes the signals into EEG subbands. In this work, we have discussed various classifiers like SVM, Naïve Bayes, KNN, random forest, decision tree, LSTM, and ANN. These classifiers help to classify the EEG signals into autistic and non-autistic based on the features extracted. When evaluated on the actual dataset obtained from King Abdul-Aziz University(KAU), Saudi Arabia, the techniques produced up to 99.9% encouraging results. This dataset contains 17 subjects, in which there are 4 normal and 13 autistic subjects. We are using the SMOTE technique for data augmentation, which has helped us to improve the performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ibrahim, S., Djemal, R., & Alsuwailem, A. (2018). Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis. Biocybernetics and Biomedical Engineering, 38(1), 16–26.

    Article  Google Scholar 

  2. Acharya, U. R., Yanti, R., Swapna, G., Sree, V. S., Martis, R. J., & Suri, J. S. (2013). Automated diagnosis of epileptic electroencephalogram using independent component analysis and discrete wavelet transform for different electroencephalogram durations. Proceedings of the Institution of Mechanical Engineers, Part H, Journal of Engineering in Medicine.

    Google Scholar 

  3. Sheikhani, A., Behnam, H., Mohammade, M. R., Noroozian, M., & Golabi, P. (2008). Connectivity analysis of quantitative electroencephalogram background activity in autism disorders with short time Fourier transform and coherence values. In Proceedings of the 1st International Congress on Image and Signal Processing (CISP’08) (pp. 207–212). IEEE.

    Google Scholar 

  4. Sheikhani, A., Behnam, H., Mohammadi, M. R., Noroozian, M., & Mohamamadi, M. (2012). Detection of abnormalities for diagnosing of children with autism disorders using of quantitative electroencephalography analysis. Journal of Medical Systems, 36(2), 957–963.

    Article  Google Scholar 

  5. Alhaddad, M. J., Kamel, M. I., Malibary, H. M., Alsaggaf, E. A., Thabit, K., Dahlwi, F., et al. (2012). Diagnosis autism by Fisher linear discriminant analysis FLDA via EEG. International Journal o Bio-Science Bio-Technology, 4, 45–54.

    Google Scholar 

  6. Sheikhani, A., Behnam, H., Mohammadi, M. R., Noroozian, M., & Mohamamadi, M. (2012). Detection of abnormalities for diagnosing of children with autism disorders using of quantitative electroencephalography analysis. Journal of Medical Systems, 36(2), 957–963.

    Article  Google Scholar 

  7. Alhaddad, M. J., Kamel, M. I., Malibary, H. M., Alsaggaf, E. A., Thabit, K., Dahlwi, F., & Hadi, A. A. (2012). Diagnosis autism by Fisher linear discriminant analysis FLDA via EEG. International Journal of Bio-Science and Bio-Technology, 4(2), 45–54.

    Google Scholar 

  8. Delorme, A., & Makeig, S. (2004). EEGLAB an open-source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods, 134, 9–21.

    Article  Google Scholar 

  9. Bosl, W. J., Tager-Flusberg, H., & Nelson, C. A. (2018). EEG analytics for early detection of autism spectrum disorder. A data-driven approach. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-24318-x

  10. Alsuwailem, A., Djemal, R., & Ibrahim, S. (2018). Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis. Biocybernetics and Biomedical Engineering, 38(1), 16–26. https://doi.org/10.1016/j.bbe.2017.08.006.

    Article  Google Scholar 

  11. Faust, O., Acharya, U. R., Adeli, H., & Adeli, A. (2015). Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure, 26(March), 56–64.

    Article  Google Scholar 

  12. Tawhid, M. N. A., Siuly, S., & Wang, H. (2020). Diagnosis of autism spectrum disorder from EEG using a time-frequency spectrogram. The Institution of Engineering and Technology, Current Trends in Cognitive Science and Brain Computing Research and Applications. https://doi.org/10.1049/el.2020.2646

  13. Ghosh-Dastidar, S., Adeli, H., & Dadmehr, N. (2007). Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Transactions on Biomedical Engineering, 54(9), 1545–1551.

    Article  Google Scholar 

  14. Seo, J.-H., & Kim, Y.-H. (2018). Machine-learning approach to optimize SMOTE ratio in class imbalance dataset for intrusion detection. Computational Intelligence and Neuroscience, 11, Article ID 9704672. https://doi.org/10.1155/2018/9704672

  15. Weinberger, K. Q., & Saul, L. K. (2019). Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research, 10(February), 207–244.

    MATH  Google Scholar 

  16. Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167.

    Article  Google Scholar 

  17. Jahromi, A. H., & Taheri, M. (2017). A non-parametric mixture of Gaussian Naive Bayes classifiers based on local independent features. In Artificial Intelligence and Signal Processing Conference (AISP) (pp. 209–212). https://doi.org/10.1109/AISP.2017.8324083

  18. Ray, S. (2019). A quick review of machine learning algorithms. In International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon) 2019 (p. 3539). https://doi.org/10.1109/COMITCon.2019.8862451

  19. Wyner, A. J., Matthew, O., Justin, B., & David, M. (2017). Explaining the success of AdaBoost and random forests as interpolating classifiers. Journal of Machine Learning Research, 18(48), 1–33.

    MathSciNet  MATH  Google Scholar 

  20. Djemal, R., AlSharabi, K., Ibrahim, S., & Alsuwailem, A. (2017). EEG-based computer aided diagnosis of autism spectrum disorder using wavelet, entropy, and ANN. BioMed Research International, 2017, 1–9. https://doi.org/10.1155/2017/9816591.

    Article  Google Scholar 

  21. Ali, N. A., Radzi, S. A., Jaafar, S., Shamsuddin, S., & Nor, N. K. (2021). LSTM-based electroencephalogram classification on autism spectrum disorder. International Journal of Integrated Engineering, 13(6), 321–329.

    Article  Google Scholar 

  22. Anas, H., Mahmod, K., Mohammed, A., Hussein, M., Khalid, T., Foud, D., & Alsaggaf, E. A. (2012). EEG based autism diagnosis using regularized Fisher linear discriminant analysis. International Journal of Image, Graphics and Signal Processing (IJIGSP), 4, 35–41. https://doi.org/10.5815/ijigsp.2012.03.06.

    Article  Google Scholar 

  23. Tawhid, Md. N. A., Siuly, S., Wang, H., Whittaker, F., Wang, K., & Zhang, Y. (2021). A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG. PLOS ONE, 16, e0253094. https://doi.org/10.1371/journal.pone.0253094.

    Article  Google Scholar 

Download references

Acknowledgements

KAU Brain Computer Interface (BCI) Group provided their own autism dataset, which we highly appreciate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, A., Agrawal, A. (2023). Development of Machine Learning Approaches for Autism Detection Using EEG Data: A Comparative Study. In: Shakya, S., Du, KL., Ntalianis, K. (eds) Sentiment Analysis and Deep Learning. Advances in Intelligent Systems and Computing, vol 1432. Springer, Singapore. https://doi.org/10.1007/978-981-19-5443-6_25

Download citation

Publish with us

Policies and ethics