Skip to main content

Emerging Applications of Chitosan-Based Nanocomposites in Multifarious Cancer Diagnosis and Therapeutics

  • Chapter
  • First Online:
Chitosan-Based Nanocomposite Materials

Abstract

Cancer, a debilitating disease by uncontrolled cell differentiation in the body, has been described to have over 200 different characteristic manifestations and clinical types. Conventional treatment strategies like chemotherapy, surgery, and radiotherapy (applying radiations) have been employed to treat the majority of the malignancies but acute side effects like hair loss, anaemia, oedema, bruising, fatigue, etc., have compelled scientists all around the world to look for alternate treatment regimes. Recent developments in nanoscience have revealed it to be highly effective in the detection and cure of cancers. One such class of nanomaterials that possesses a lot of potential in the biomedical domain is nanocomposites which can be roughly defined as a combination of nanoscale substances having no less than one dimension in the nanoscale range that are arranged in terms of a polymeric matrix, with the materials being in various combinations of organic and inorganic origin. Their rise in demand and research is because of their unusual properties and flexible nature that is relevant in the biomedical landscape. When associated with other biomaterials, they become even more functionally advantageous and the most promising one in cancer diagnostics, and treatment is chitosan. Chitosan, being a biopolymer, is produced by deacetylating chitin, a widely found polymeric form of N-acetylglucosamine which contains active functional groups that are highly susceptible to chemical reactions. This results in many unique properties like biocompatibility, biodegradability, non-toxicity, antimicrobial activity, etc. Thus, this chapter focusses on the up-gradation of nanocomposite properties when introduced with chitosan along with highlighting the multifarious uses of these chitosan-based nanocomposites in the domain of biomedicine, with special emphasis on cancer diagnostics and treatment. The chapter also aims to put into perspective, the recent developments in these biomaterials and discusses their functionalities and attributes whilst describing their applications in cancer healthcare concerning future advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A549:

Adenocarcinomic human alveolar basal epithelial cell line

API:

Active pharmaceutical ingredient

CHI:

Chitosan

CHI/GO:

Chitosan conjugated graphene oxide

HCT-15:

Human colorectal carcinoma cell line

HeLa cells:

Henrietta lacks cell line

HepG2:

Liver hepatocellular carcinoma

HT-29:

Human colorectal adenocarcinoma cell line

IARC:

International agency for research on cancer

ISO:

International organization for standardization

MCF-7:

Michigan cancer foundation

NP:

Nanoparticle

PLGA:

Poly(lactic-co-glycolic) acid

ROS:

Reactive oxygen species

XRD:

X-ray diffraction

References

  1. Gulati S, Kumar S, Singh P, Diwan A, Mongia A (2020) Biocompatible Chitosan-coated gold nanoparticles: novel, efficient, and promising nanosystems for cancer treatment. In: Handbook of polymer and ceramic nanotechnology. Springer International Publishing, pp 1–29

    Google Scholar 

  2. Arora B, Bhatia R, Attri P (2018) In: Bionanocomposites: green materials for a sustainable future. Elsevier Inc.

    Google Scholar 

  3. Kamel S (2007) Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polym Lett 1(9):546–575. https://doi.org/10.3144/expresspolymlett.2007.78

    Article  Google Scholar 

  4. Gulati S et al (2022) Starch based bio-nanocomposites: modern and benign materials in food packaging industry. In: Handbook of consumer nanoproducts, pp 881–909. https://doi.org/10.1007/978-981-16-8698-6_96

  5. Wang EC, Wang AZ (2014) Nanoparticles and their applications in cell and molecular biology. Integr Biol (United Kingdom) 6(1):9–26. https://doi.org/10.1039/c3ib40165k

    Article  Google Scholar 

  6. Kumar S, Mongia A, Gulati S, Singh P, Diwan A, Shukla S (2020) Emerging theranostic gold nanostructures to combat cancer: novel probes for combinatorial immunotherapy and photothermal therapy. Cancer Treat Res Commun 25:100258. https://doi.org/10.1016/J.CTARC.2020.100258

    Article  Google Scholar 

  7. van der Meel R, Lammers T, Hennink WE (2017) Cancer nanomedicines: oversold or underappreciated? Expert Opinion Drug Delivery 14(1):1–5, 20 Jan 2017. Taylor and Francis Ltd. https://doi.org/10.1080/17425247.2017.1262346

  8. Grodzinski P, Kircher M, Goldberg M, Gabizon A (2019) Integrating nanotechnology into cancer care. ACS Nano 13(7):7370–7376. https://doi.org/10.1021/acsnano.9b04266

    Article  Google Scholar 

  9. Chikwendu Okpala C The benefits and applications of nanocomposites. Int J Adv Eng Technol

    Google Scholar 

  10. Yuan J, Zhang X, Qian H (2010) A novel approach to fabrication of superparamagnetite hollow silica/magnetic composite spheres. J Magn Magn Mater 15(322):2172–2176. https://doi.org/10.1016/J.JMMM.2010.02.004

    Article  ADS  Google Scholar 

  11. José-Yacamán M, Rendón L, Arenas J, Serra Puche MC (1996) Maya blue paint: an ancient nanostructured material. Science (80) 273(5272):223–225. https://doi.org/10.1126/SCIENCE.273.5272.223

  12. Tian Z, Hu H, Sun Y (2013) A molecular dynamics study of effective thermal conductivity in nanocomposites. Int J Heat Mass Transf 61(1):577–582. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2013.02.023

    Article  Google Scholar 

  13. Cheung RCF, Ng TB, Wong JH, Chan WY (2015) Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs 13(8):5156. https://doi.org/10.3390/MD13085156

    Article  Google Scholar 

  14. Adhikari HS, Yadav PN (2018) Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int J Biomater 2018. https://doi.org/10.1155/2018/2952085

  15. Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll 29(1):48–56. https://doi.org/10.1016/J.FOODHYD.2012.02.013

    Article  Google Scholar 

  16. Sandri G, Rossi S, Bonferoni MC, Ferrari F, Mori M, Caramella C (2012) The role of chitosan as a mucoadhesive agent in mucosal drug delivery. J Drug Deliv Sci Technol 22(4):275–284. https://doi.org/10.1016/S1773-2247(12)50046-8

    Article  Google Scholar 

  17. Pogorielov MV, Sikora VZ (2015) Chitosan as a hemostatic agent: current state. Eur J Med Ser B 2(1):24–33. https://doi.org/10.13187/EJM.S.B.2015.2.24

    Article  Google Scholar 

  18. Hu Z et al (2018) Investigation of the effects of molecular parameters on the hemostatic properties of chitosan. Molecules 23(12). https://doi.org/10.3390/MOLECULES23123147

  19. Hasegawa M, Yagi K, Iwakawa S, Hirai M (2001) Chitosan induces apoptosis via caspase-3 activation in bladder tumor cells. Jpn J Cancer Res 92(4):459–466. https://doi.org/10.1111/J.1349-7006.2001.TB01116.X

    Article  Google Scholar 

  20. Wang W et al (2020) Chitosan derivatives and their application in biomedicine. Int J Mol Sci 21(2). https://doi.org/10.3390/IJMS21020487

  21. Babu A, Ramesh R (2017) Multifaceted applications of chitosan in cancer drug delivery and therapy. Mar Drugs 15(4). https://doi.org/10.3390/MD15040096

  22. Huang H, Yuan Q, Yang X (2004) Preparation and characterization of metal–chitosan nanocomposites. Colloids Surf B Biointerfaces 39(1–2):31–37. https://doi.org/10.1016/J.COLSURFB.2004.08.014

    Article  Google Scholar 

  23. Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652. https://doi.org/10.1021/SC500634P/ASSET/IMAGES/MEDIUM/SC-2014-00634P_0011.GIF

    Article  Google Scholar 

  24. Fernandes SCM, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A (2011) Novel materials based on chitosan and cellulose. Polym Int 60(6):875–882. https://doi.org/10.1002/PI.3024

  25. Zheng LY, Zhu JF (2003) Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym 4(54):527–530. https://doi.org/10.1016/J.CARBPOL.2003.07.009

    Article  Google Scholar 

  26. Lavorgna M et al (2014) MMT-supported Ag nanoparticles for chitosan nanocomposites: structural properties and antibacterial activity. Carbohydr Polym 102(1):385–392. https://doi.org/10.1016/J.CARBPOL.2013.11.026

    Article  Google Scholar 

  27. Lim HN, Huang NM, Loo CH (2012) Facile preparation of graphene-based chitosan films: enhanced thermal, mechanical and antibacterial properties. J Non Cryst Solids 3(358):525–530. https://doi.org/10.1016/J.JNONCRYSOL.2011.11.007

    Article  ADS  Google Scholar 

  28. Termsarasab U et al (2013) Chitosan oligosaccharide–arachidic acid-based nanoparticles for anti-cancer drug delivery. Int J Pharm 441(1–2):373–380. https://doi.org/10.1016/J.IJPHARM.2012.11.018

    Article  Google Scholar 

  29. Han HD et al (2010) Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res 16(15):3910–3922. https://doi.org/10.1158/1078-0432.CCR-10-0005

    Article  Google Scholar 

  30. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013 1211 12(11):991–1003. https://doi.org/10.1038/nmat3776

  31. Lima AC, Sher P, Mano JF (2012) Production methodologies of polymeric and hydrogel particles for drug delivery applications. 9(2):231–248. https://doi.org/10.1517/17425247.2012.652614

  32. Kavaz A et al (2010) Bleomycin loaded magnetic chitosan nanoparticles as multifunctional nanocarriers. https://doi.org/10.1177/0883911509360735

  33. Tripathy S, Das S, Chakraborty SP, Sahu SK, Pramanik P, Roy S (2012) Synthesis, characterization of chitosan-tripolyphosphate conjugated chloroquine nanoparticle and its in vivo anti-malarial efficacy against rodent parasite: a dose and duration dependent approach. Int J Pharm 434(1–2):292–305. https://doi.org/10.1016/J.IJPHARM.2012.05.064

    Article  Google Scholar 

  34. Wu D et al (2016) Zinc-stabilized chitosan-chondroitin sulfate nanocomplexes for HIV-1 infection inhibition application. Mol Pharm 13(9):3279–3291. https://doi.org/10.1021/ACS.MOLPHARMACEUT.6B00568/SUPPL_FILE/MP6B00568_SI_001.PDF

    Article  Google Scholar 

  35. Yuan Q, Hein S, Misra RDK (2010) New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. Acta Biomater 6(7):2732–2739. https://doi.org/10.1016/J.ACTBIO.2010.01.025

    Article  Google Scholar 

  36. Wu W, Shen J, Banerjee P, Zhou S (2010) Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 31(32):8371–8381. https://doi.org/10.1016/J.BIOMATERIALS.2010.07.061

    Article  Google Scholar 

  37. James R et al (2011) Nanocomposites and bone regeneration. Front Mater Sci 5(4):342–357. https://doi.org/10.1007/S11706-011-0151-3

    Article  Google Scholar 

  38. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6(12):4495–4505. https://doi.org/10.1016/j.actbio.2010.06.024

    Article  Google Scholar 

  39. Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26(30):5983–5990. https://doi.org/10.1016/J.BIOMATERIALS.2005.03.016

    Article  Google Scholar 

  40. Bhowmick A et al (2016) Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials. Carbohydr Polym 151:879–888. https://doi.org/10.1016/J.CARBPOL.2016.06.034

    Article  Google Scholar 

  41. In KS et al (2009) Chitosan nano-/microfibrous double-layered membrane with rolled-up three-dimensional structures for chondrocyte cultivation. J Biomed Mater Res A 90(2):595–602. https://doi.org/10.1002/JBM.A.32109

    Article  Google Scholar 

  42. Mottaghitalab F, Farokhi M, Mottaghitalab V, Ziabari M, Divsalar A, Shokrgozar MA (2011) Enhancement of neural cell lines proliferation using nano-structured chitosan/poly(vinyl alcohol) scaffolds conjugated with nerve growth factor. Carbohydr Polym 86(2):526–535. https://doi.org/10.1016/J.CARBPOL.2011.04.066

    Article  Google Scholar 

  43. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923. https://doi.org/10.1002/JPS.21210

    Article  Google Scholar 

  44. Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286. https://doi.org/10.1016/J.IJBIOMAC.2017.12.078

    Article  Google Scholar 

  45. Lu B et al (2012) Graphene-based composite materials beneficial to wound healing. Nanoscale 4(9):2978–2982. https://doi.org/10.1039/C2NR11958G

    Article  ADS  Google Scholar 

  46. Aguzzi C et al (2014) Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids Surf B Biointerfaces 113:152–157. https://doi.org/10.1016/J.COLSURFB.2013.08.043

    Article  Google Scholar 

  47. Malmo J, Vårum KM, Strand SP (2011) Effect of chitosan chain architecture on gene delivery: comparison of self-branched and linear chitosans. Biomacromol 12(3):721–729. https://doi.org/10.1021/BM1013525

    Article  Google Scholar 

  48. Lee CM et al (2011) Oleyl-chitosan nanoparticles based on a dual probe for optical/MR imaging in vivo. Bioconjug Chem 22(2):186–192. https://doi.org/10.1021/BC100241A

    Article  Google Scholar 

  49. Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084. https://doi.org/10.1021/CR030441B/ASSET/CR030441B.FP.PNG_V03

    Article  Google Scholar 

  50. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014. https://doi.org/10.1016/j.progpolymsci.2011.02.001

    Article  Google Scholar 

  51. Yasuga H, Shoji K, Koiwai K, Kawano R (2021) New sensing technologies: Microtas/NEMS/MEMS. Ref Modul Biomed Sci. https://doi.org/10.1016/B978-0-12-822548-6.00046-7

    Article  Google Scholar 

  52. Singh A et al (2013) Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sens Actuators, B Chem 185:675–684. https://doi.org/10.1016/J.SNB.2013.05.014

    Article  Google Scholar 

  53. Qin FX, Jia SY, Wang FF, Wu SH, Song J, Liu Y (2013) Hemin@metal-organic framework with peroxidase-like activity and its application to glucose detection. Catal Sci Technol 3(10):2761–2768. https://doi.org/10.1039/c3cy00268c

    Article  Google Scholar 

  54. Zhang L, Han G, Liu Y, Tang J, Tang W (2014) Immobilizing haemoglobin on gold/graphene–chitosan nanocomposite as efficient hydrogen peroxide biosensor. Sens Actuators B Chem (197):164–171. https://doi.org/10.1016/J.SNB.2014.02.077

  55. Din FU et al (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed 12:7291. https://doi.org/10.2147/IJN.S146315

    Article  Google Scholar 

  56. Zhang G, Sun X, Jasinski J, Patel D, Gobin AM (2012) Gold/chitosan nanocomposites with specific near infrared absorption for photothermal therapy applications. J Nanomater 2012. https://doi.org/10.1155/2012/853416

  57. Suresh L, Brahman PK, Reddy KR, Bondili JS (2018) Development of an electrochemical immunosensor based on gold nanoparticles incorporated chitosan biopolymer nanocomposite film for the detection of prostate cancer using PSA as biomarker. Enzyme Microb Technol 112:43–51. https://doi.org/10.1016/J.ENZMICTEC.2017.10.009

    Article  Google Scholar 

  58. Xia B, Zhang W, Tong H, Li J, Chen Z, Shi J (2019) Multifunctional Chitosan/Porous Silicon@Au nanocomposite hydrogels for long-term and repeatedly localized combinatorial therapy of cancer via a single injection. ACS Biomater Sci Eng 5(4):1857–1867. https://doi.org/10.1021/ACSBIOMATERIALS.8B01533/SUPPL_FILE/AB8B01533_SI_001.PDF

    Article  Google Scholar 

  59. Narwal V, Kumar P, Joon P, Pundir CS (2018) Fabrication of an amperometric sarcosine biosensor based on sarcosine oxidase/chitosan/CuNPs/c-MWCNT/Au electrode for detection of prostate cancer. Enzyme Microb Technol 113:44–51. https://doi.org/10.1016/J.ENZMICTEC.2018.02.010

    Article  Google Scholar 

  60. Bharathi D, Ranjithkumar R, Chandarshekar B, Bhuvaneshwari V (2019) Bio-inspired synthesis of chitosan/copper oxide nanocomposite using rutin and their anti-proliferative activity in human lung cancer cells. Int J Biol Macromol 141:476–483. https://doi.org/10.1016/J.IJBIOMAC.2019.08.235

    Article  Google Scholar 

  61. Thangam R et al (2015) Theranostic potentials of multifunctional chitosan-silver-phycoerythrin nanocomposites against triple negative breast cancer cells. RSC Adv 5(16):12209–12223. https://doi.org/10.1039/C4RA14043E

    Article  ADS  Google Scholar 

  62. Sanpui P, Chattopadhyay A, Ghosh SS (2011) Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces 3(2):218–228. https://doi.org/10.1021/AM100840C/SUPPL_FILE/AM100840C_SI_001.PDF

    Article  Google Scholar 

  63. Arjunan N, Kumari HLJ, Singaravelu CM, Kandasamy R, Kandasamy J (2016) Physicochemical investigations of biogenic chitosan-silver nanocomposite as antimicrobial and anticancer agent. Int J Biol Macromol 92:77–87. https://doi.org/10.1016/J.IJBIOMAC.2016.07.003

    Article  Google Scholar 

  64. Dawy Badry M, Ahmed Wahba M, Khaled R, Moawad Ali M, Ali Farghali A (2017) Synthesis, characterization, and in-vitro anticancer evaluation of iron oxide/chitosan nanocomposites. Inorganic Nano-Metal Chem 47(3):405–411. https://doi.org/10.1080/15533174.2016.1186064

  65. Rabel AM, Namasivayam SKR, Prasanna M, Bharani RSA (2019) A green chemistry to produce iron oxide—chitosan nanocomposite (CS-IONC) for the upgraded bio-restorative and pharmacotherapeutic activities—supra molecular nanoformulation against drug-resistant pathogens and malignant growth. Int J Biol Macromol 138:1109–1129. https://doi.org/10.1016/J.IJBIOMAC.2019.07.158

    Article  Google Scholar 

  66. Lei H, Xie M, Zhao Y, Zhang F, Xu Y, Xie J (2016) Chitosan/sodium alginate modificated graphene oxide-based nanocomposite as a carrier for drug delivery. Ceram Int 42(15):17798–17805. https://doi.org/10.1016/J.CERAMINT.2016.08.108

    Article  Google Scholar 

  67. Dhanavel S et al (2020) 5-Fluorouracil and curcumin co-encapsulated chitosan/reduced graphene oxide nanocomposites against human colon cancer cell lines. Polym Bull 77(1):213–233. https://doi.org/10.1007/S00289-019-02734-X

    Article  Google Scholar 

  68. Anirudhan TS, Chithra Sekhar V, Athira VS (2020) Graphene oxide based functionalized chitosan polyelectrolyte nanocomposite for targeted and pH responsive drug delivery. Int J Biol Macromol 150:468–479. https://doi.org/10.1016/J.IJBIOMAC.2020.02.053

  69. Ahmad N, Sultana S, Faisal SM, Ahmed A, Sabir S, Khan MZ (2019) Zinc oxide-decorated polypyrrole/chitosan bionanocomposites with enhanced photocatalytic, antibacterial and anticancer performance. RSC Adv 9(70):41135–41150. https://doi.org/10.1039/C9RA06493A

    Article  ADS  Google Scholar 

  70. Nejadshafiee V et al (2019) Magnetic bio-metal–organic framework nanocomposites decorated with folic acid conjugated chitosan as a promising biocompatible targeted theranostic system for cancer treatment. Mater Sci Eng C 99:805–815. https://doi.org/10.1016/J.MSEC.2019.02.017

    Article  Google Scholar 

  71. Nivethaa EAK, Dhanavel S, Rebekah A, Narayanan V, Stephen A (2016) A comparative study of 5-Fluorouracil release from chitosan/silver and chitosan/silver/MWCNT nanocomposites and their cytotoxicity towards MCF-7. Mater Sci Eng C Mater Biol Appl 66:244–250. https://doi.org/10.1016/J.MSEC.2016.04.080

    Article  Google Scholar 

  72. Manivasagan P et al (2017) Multifunctional biocompatible chitosan-polypyrrole nanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer. Sci Rep 7. https://doi.org/10.1038/SREP43593

  73. Sharma H, Mondal S (2020) Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: a promising material in nanomedicine. Int J Mol Sci 21(17):1–42. https://doi.org/10.3390/IJMS21176280

    Article  Google Scholar 

  74. Venkatesan P et al (2011) The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials 32(15):3794–3806. https://doi.org/10.1016/J.BIOMATERIALS.2011.01.027

    Article  Google Scholar 

  75. Abdel-Aziz MM, Elella MHA, Mohamed RR (2020) Green synthesis of quaternized chitosan/silver nanocomposites for targeting mycobacterium tuberculosis and lung carcinoma cells (A-549). Int J Biol Macromol 142:244–253. https://doi.org/10.1016/J.IJBIOMAC.2019.09.096

    Article  Google Scholar 

  76. Vivek R, Nipun Babu V, Thangam R, Subramanian KS, Kannan S (2013) PH-responsive drug delivery of chitosan nanoparticles as Tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf B Biointerfaces 111:117–123. https://doi.org/10.1016/J.COLSURFB.2013.05.018

  77. Arya G, Vandana M, Acharya S, Sahoo SK (2011) Enhanced antiproliferative activity of Herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy. Nanomed Nanotechnol Biol Med 7(6):859–870. https://doi.org/10.1016/J.NANO.2011.03.009

    Article  Google Scholar 

Important Websites

  1. https://www.azom.com/article.aspx?ArticleID=17329

  2. https://www.mddionline.com/news/enhancing-medical-device-performance-nanocomposite-polymers

  3. https://royalsocietypublishing.org/doi/10.1098/rsta.2017.0040

  4. https://worldwidescience.org/topicpages/b/bio-nanocomposites+biopolymer+matrix.html

  5. https://www.britannica.com/technology/nanotechnology

  6. https://www.polymerexpert.biz/industries/173-composites

  7. https://www.drugs.com/npp/chitosan.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Gulati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, N., Gulati, S., Bhat, J. (2022). Emerging Applications of Chitosan-Based Nanocomposites in Multifarious Cancer Diagnosis and Therapeutics. In: Gulati, S. (eds) Chitosan-Based Nanocomposite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-5338-5_7

Download citation

Publish with us

Policies and ethics