Skip to main content

Development of Nipah Palm Fibre Extraction Process as Reinforcing Agent in Unsaturated Polyester Composite

  • Chapter
  • First Online:
Composites from the Aquatic Environment

Abstract

This chapter discussed the extraction of nipah (Nypa fruticans) palm fibre as composite reinforcing agent. The properties including physical, chemical, thermal, crystalline, surface morphology, tensile strength and water absorption of untreated and alkali treated nipah palm fibre were investigated in this work. There were two types of fibres extracted from the fronds, grouped as Fibre A and Fibre B, with average diameters of 0.530 mm and 0.039 mm respectively. The untreated and alkali treated nipah palm fibre were studied for its behaviour using Thermogravimetric Analysis (TGA), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) analysis. Hand lay-up and cold press method were used to fabricate nipah palm composite. The highest composite strength and Young’s Modulus for Fibre A were 29.36 MPa and 471 MPa respectively. For Fibre B composites, the highest strength was at 29.67 and 102 MPa for its Young’s Modulus. The results of water absorption test showed better absorption resistance of treated fibre towards water. Future work direction of this investigation is to use vacuum bagging method to fabricate the composites and to use different types of polymer matrix. Based on the results obtained from this investigation, nipah fibre composites maybe used for non-load bearing structures such as car component, food and pharmaceutical packaging and bio-based electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teo, S., Ang, W. F., Lok, A. F. S. L., Kurukulasuriya, B. R., & Tan, H. T. W. (2010). The status and distribution of the Nipah palm Nypa fruticans Wurmb. (Arecaceae), in Singapore. Nature in Singapore, 3(February), 45–52.

    Google Scholar 

  2. Tsuji, K., et al. (2011). Biological and ethnobotanical characteristics of Nipa Palm (Nypa fructicans wurmb.): A review. Sains Malaysiana, 40(12), 1407–1412.

    Google Scholar 

  3. Sarawak Forestry Corporation (SFC). (2018). Mangrove forest in Sarawak.

    Google Scholar 

  4. (2019). Nypa fruticans (nipa palm). Retrieved September 30, 2021, from http://www.cabi.org/isc/datasheet/36772

  5. Cao, L. N. H., Nguyễn, T. B. T., Lương, H. V. T., Mai, V. P. T., & Trần, N. P. L. (2021). Nghiên cứu vật liệu composite thân thiện môi trường từ sợi cuống dừa nước và nhựa polyethylene tỷ trọng cao tái chế. Can Tho University Journal of Science, 57(6), 42–52. https://doi.org/10.22144/ctu.jvn.2021.171

    Article  Google Scholar 

  6. Mohammed, L., Ansari, M. N. M., Pua, G., Jawaid, M., & Islam, M. S. (2015). A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/243947

  7. Hamilton, L. S., & Murphy, D. H. (1988). Use and management of Nipa palm (Nypa fruticans, arecaceae): A review. Economic Botany, 42(2), 206–213. https://doi.org/10.1007/BF02858921

    Article  Google Scholar 

  8. Neves, S., Muylaert, F., Rodrigues, G., Leite, R., & Picanço, M. (2015). Tensile strength of polyester composites reinforced with thinner buriti fibers. 805, 466–471. https://doi.org/10.4028/www.scientific.net/MSF.805.466

  9. Kruse, K. (2001). Properties of nipa- and coconut fibers and production and properties of particle- and MDF-boards made from nipa and coconut (pp. 1–41).

    Google Scholar 

  10. Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2014). Progress report on natural fiber reinforced composites. Macromolecular Materials and Engineering (Wiley-VCH Verlag), 299(1), 9–26. https://doi.org/10.1002/mame.201300008

  11. Salit, M. S., Jawaid, M., bin Yusoff, N., & Hoque, M. E. (2015). Manufacturing of natural fibre reinforced polymer composites (pp. 1–383). https://doi.org/10.1007/978-3-319-07944-8

  12. Dickie, T., Syazali, S. T. B. S., & Noor Mohamed, N. H. B. (2020). Development of nipah palm fibre extraction process. Materials Science Forum, 997, 57–65. https://doi.org/10.4028/www.scientific.net/MSF.997.57

  13. Tamburini, E., León, A. G., Perito, B., di Candilo, M., & Mastromei, G. (2004). Exploitation of bacterial pectinolytic strains for improvement of hemp water retting. Euphytica, 140(1–2), 47–54. https://doi.org/10.1007/s10681-004-4754-y

    Article  Google Scholar 

  14. Liu, M., et al. (2015). Effect of harvest time and field retting duration on the chemical composition, morphology and mechanical properties of hemp fibers. Industrial Crops and Products, 69, 29–39. https://doi.org/10.1016/j.indcrop.2015.02.010

    Article  CAS  Google Scholar 

  15. Masashi Shibata, S. S., Varman, M., Tono, Y., & Miyafuji, H. (2008). Characterization in chemical composition of the oil palm (Elaeis guineensis). Journal of the Japan Institute of Energy, (87), 383–388. https://doi.org/10.1046/j.1365-2559.2002.14891.x

  16. Tamunaidu, P., & Saka, S. (2011). Chemical characterization of various parts of nipa palm (Nypa fruticans). Industrial Crops and Products, 34(3), 1423–1428. https://doi.org/10.1016/j.indcrop.2011.04.020

    Article  CAS  Google Scholar 

  17. Ridzuan, M. J. M., Abdul Majid, M. S., Afendi, M., Aqmariah Kanafiah, S. N., Zahri, J. M., & Gibson, A. G. (2016). Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites. Materials and Design, 89, 839–847. https://doi.org/10.1016/j.matdes.2015.10.052

  18. Yusriah, L., Sapuan, S. M., Zainudin, E. S., & Mariatti, M. (2014). Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre. Journal of Cleaner Production, 72, 174–180. https://doi.org/10.1016/j.jclepro.2014.02.025

    Article  CAS  Google Scholar 

  19. Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2013). Tensile properties of chemically treated hemp fibres as reinforcement for composites. Composites Part B: Engineering, 53, 362–368. https://doi.org/10.1016/j.compositesb.2013.05.048

    Article  CAS  Google Scholar 

  20. Hossain, M. K., et al. (2014). Comparative mechanical and thermal study of chemically treated and untreated single sugarcane fiber bundle. Industrial Crops and Products, 58(November 2017), 78–90. https://doi.org/10.1016/j.indcrop.2014.04.002

  21. Yue, Y., Han, J., Han, G., Aita, G. M., & Wu, Q. (2015). Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: Structural, chemical and thermal properties. Industrial Crops and Products, 76, 355–363. https://doi.org/10.1016/j.indcrop.2015.07.006

    Article  CAS  Google Scholar 

  22. Abral, H., et al. (2012). Alkali treatment of screw pine (Pandanus odoratissimus) fibers and its effect on unsaturated polyester composites. Polymer-Plastics Technology and Engineering, 51(August 2013), 12–18. https://doi.org/10.1080/03602559.2011.593090

  23. Hashim, M. Y., Amin, A. M., Mohd, O., & Marwah, F. (2017). The effect of alkali treatment under various conditions on physical properties of kenaf fiber.

    Google Scholar 

  24. Mwaikambo, L. Y., & Ansell, M. P. (2002). Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science, 84(12), 2222–2234. https://doi.org/10.1002/app.10460

    Article  CAS  Google Scholar 

  25. Mwaikambo, L. Y. (2008). Kapok/cotton fabric—polypropylene composites. Polymer Testing, 19(2000), 905–918.

    Google Scholar 

  26. Reddy, K. O., Maheswari, C. U., Reddy, D. J. P., & Rajulu, A. V. (2009). Thermal properties of Napier grass fibers. Materials Letters, 63(27), 2390–2392. https://doi.org/10.1016/j.matlet.2009.08.035

    Article  CAS  Google Scholar 

  27. Wang, Z., Li, J., Barford, J. P., Hellgradt, K., & Mckay, G. (2016). A comparison of chemical treatment methods for the preparation of rice husk cellulosic fibers. (1), 67–77.

    Google Scholar 

  28. Sain, M., & Panthapulakkal, S. (2006). Bioprocess preparation of wheat straw fibers and their characterization. Industrial Crops and Products, 23(1), 1–8. https://doi.org/10.1016/j.indcrop.2005.01.006

    Article  CAS  Google Scholar 

  29. Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R., & Herrera-Franco, P. J. (1999). Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering, 30(3), 309–320. https://doi.org/10.1016/S1359-8368(98)00054-7

    Article  Google Scholar 

  30. Cai, M., Takagi, H., Nakagaito, A. N., Li, Y., & Waterhouse, G. I. N. (2016). Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 90(August), 589–597. https://doi.org/10.1016/j.compositesa.2016.08.025

    Article  CAS  Google Scholar 

  31. Rasidi, M. S. M., Husseinsyah, S., & Leng, T. P. (2014). Chemical modification of nypa fruticans filled polylactic acid/recycled low-density polyethylene biocomposites. BioResources, 9(2), 2033–2050.

    Google Scholar 

  32. Júnior, A. E. C., Barreto, A. C. H., Rosa, D. S., Maia, F. J. N., Lomonaco, D., & Mazzetto, S. E. (2015). Thermal and mechanical properties of biocomposites based on a cashew nut shell liquid matrix reinforced with bamboo fibers. Journal of Composite Materials, 49(18), 2203–2215. https://doi.org/10.1177/0021998314545182

    Article  CAS  Google Scholar 

  33. Segal, L., Creely, J. J., MartinJr, A. E., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Têxtil Research Journal, 29, 786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  34. Haameem, J. A. M., Abdul Majid, M. S., Afendi, M., Haslan, M., & Fahmi, I. (2016). Alkaline treatment and thermal properties of Napier grass fibres. International Journal of Automotive and Mechanical Engineering, 13(1), 3238–3247. https://doi.org/10.15282/ijame.13.1.2016.10.0270

  35. Vardhini, K. J. V., Murugan, R., Selvi, C., & Surjit, R. (2016). Optimisation of alkali treatment of banana fibres on lignin removal. Indian Journal of Fibre and Textile Research, 41(2), 156–160.

    Google Scholar 

  36. Reddy, K. O., Maheswari, C. U., Shukla, M., & Rajulu, A. V. (2012). Chemical composition and structural characterization of Napier grass fibers. Materials Letters, 67(1), 35–38. https://doi.org/10.1016/j.matlet.2011.09.027

    Article  CAS  Google Scholar 

  37. Han, S. O., & Choi, H. Y. (2010). Morphology and surface properties of natural fiber treated with electron beam. Microscopy: Science, Technology, Applications and Education, 1880, 1880–1887.

    Google Scholar 

  38. Guimarães, J. L., Frollini, E., da Silva, C. G., Wypych, F., & Satyanarayana, K. G. (2009). Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Industrial Crops and Products, 30(3), 407–415. https://doi.org/10.1016/j.indcrop.2009.07.013

    Article  CAS  Google Scholar 

  39. Cai, M., Takagi, H., Nakagaito, A. N., Kusaka, K., Katoh, M., & Li, Y. (2015). Influence of alkali concentration on morphology and tensile properties of abaca fibers. Advanced Materials Research, 1110, 302–305. https://doi.org/10.4028/www.scientific.net/AMR.1110.302

    Article  Google Scholar 

  40. Boynard, C. A., & D’Almeida, J. R. M. (2000). Morphological characterization and mechanical behavior of sponge gourd (Luffa cylindrica)-polyester composite materials. Polymer—Plastics Technology and Engineering, 39(3), 489–499. https://doi.org/10.1081/PPT-100100042

    Article  CAS  Google Scholar 

  41. Melkamu, A., Kahsay, M. B., & Tesfay, A. G. (2018). Mechanical and water-absorption properties of sisal fiber (Agave sisalana)-reinforced polyester composite. Journal of Natural Fibers, 1–9. https://doi.org/10.1080/15440478.2018.1441088.

  42. Monteiro, S. N., Terrones, L. A. H., & D’Almeida, J. R. M. (2008). Mechanical performance of coir fiber/polyester composites. Polymer Testing, 27(5), 591–595. https://doi.org/10.1016/j.polymertesting.2008.03.003

  43. Nascimento, D. C. O., Lopes, F. P. D., & Monteiro, S. N. (2010). Tensile behavior of lignocellulosic fiber reinforced polymer composites: Part I piassava/epoxy (a) (b) (pp. 189–194).

    Google Scholar 

  44. Haameem, M., Majid, A., Afendi, M., Marzuki, H. F. A., Fahmi, I., & Gibson, A. G. (2016). Mechanical properties of Napier grass fibre/polyester composites. Composite Structures, 136, 1–10. https://doi.org/10.1016/j.compstruct.2015.09.051

    Article  Google Scholar 

  45. Mazuki, A. A. M., Akil, H. M., Safiee, S., Ishak, Z. A. M., & Bakar, A. A. (2011). Degradation of dynamic mechanical properties of pultruded kenaf fiber reinforced composites after immersion in various solutions. Composites Part B: Engineering, 42(1), 71–76. https://doi.org/10.1016/j.compositesb.2010.08.004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Tarmizi Syed Shazali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Syed Shazali, S.T., Dickie, T., Noor Mohamed, N.H. (2023). Development of Nipah Palm Fibre Extraction Process as Reinforcing Agent in Unsaturated Polyester Composite. In: S. M., S., Ahmad, I. (eds) Composites from the Aquatic Environment. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-19-5327-9_8

Download citation

Publish with us

Policies and ethics