Skip to main content

Measurements of Shock and Detonation Phenomena

  • Chapter
  • First Online:
Detonation Phenomena of Condensed Explosives

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 316 Accesses

Abstract

Measurements of shock and detonation phenomena are very difficult task because of destructive nature and extremely short duration of events. The experimental data are very important in verifying the theoretical description of phenomena. The advance in theoretical model and numerical simulation depends strongly on the progress in various experimental methods. During last decades, nanosecond time-resolved measurements of detonation pressure, particle velocity and temperature have become possible owing to the rapid progress of the experimental devices. In this chapter, the experimental diagnostics such as pressure and particle velocity gauges, laser velocity interferometer and optical pyrometer are presented. Actually, the experimental data of detonation temperature are very scarce. Detonation temperatures measured for various liquid and solid explosives are summarized and compared with theoretical values calculated using various types of equation of states. Underwater explosion test is a valuable tool to access the energy content and performance of explosives in longer time scale. Characteristics of the underwater explosion phenomena and measurements of underwater shock wave and bubble pulse are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graham RA (1993) Chapter 3 in Solids Under high-pressure shock compression Graham RA (ed.), Springer-Verlag

    Google Scholar 

  2. Barker LM, Shahinppr M, Chhabildas LC (1993) Chapter 3 in high-pressure shock compression of solids Asay JR, Shahinpoor M (ed.), Springer-Verlag

    Google Scholar 

  3. Wackerle J, Johnson JO, Halleck PM (1976) Shock initiation of high density PETN. In: Proceedings 6th international deonation symposium, Coronado, CA, Office of Naval research, Arlington, VA, pp 20–28

    Google Scholar 

  4. Burrows K, Chilvers DK, Gyton R, Lambour BD, Wallace AA (1976) Determination of detonation pressure using manganin wire technique. In: Proceedings 6th international detonation symposium, Coronado, CA, Office of Naval Research, Arlington, VA, pp 625–636

    Google Scholar 

  5. Kawai H (1969) Piezoelectricity of poly (vinylidene fluoride). Japan J Appl Phys 8:975–981

    Article  ADS  Google Scholar 

  6. Graham RA (1993) Chapter 5 in solid under high-pressure shock compression Graham RA (ed.), Springer-Verlag.

    Google Scholar 

  7. Bauer F (1981) Behaviour of ferroelectric ceramics and PVDF2 polymers under shock loading. AIP Conf Proc 78:251–267

    ADS  Google Scholar 

  8. Bauer F (2005) Piezoelectric polymer shock gauges. AIP Conf Proc 845:1183–1186

    Article  ADS  Google Scholar 

  9. Bauer F (2001) PVDF gauge piezoelectric response under two-stage light gas gun impact loading. AIP Conf Proc 620:1149–1152

    Article  ADS  Google Scholar 

  10. Murata K, Kato Y (2010) Application of PVDF pressure gauge for pressure measurements of non-ideal explosives. Int J Soc Mater Eng Resour 17(2):112–114

    Article  Google Scholar 

  11. Zaitsev VM, Pokhil PF, Shedov KK (1960) The electromagnetic method for the measurement of velocities of detonation products. Doklady Acad Sci USSR 132(6):139

    Google Scholar 

  12. Jacobs SJ, Edwards DJ (1970) Experimental study of the electromagnetic velocity-gauge technique. In: Proceedings 5th international detonation symposium, Pasadena, CA, Office of Naval Research, Arlington, VA, pp 413–426

    Google Scholar 

  13. Cowperthwaite M, Rosenberg JT (1981) Lagrange gauge study in ideal and non-ideal explosives. Proceedings 7th international detonation symposium, Annapolis, MD, Naval Surface Weapon Center, White Oak, MD, pp 1072–1085

    Google Scholar 

  14. Vorthman J, Andrews G, Wackerle J (1985) Reaction rates from electromagnetic gauge data. In: Proceedings 8th international detonation symposium, Albuquerque, NM, NSWC, MD, pp 99–110

    Google Scholar 

  15. Sheffield SA, Gustavsen RL, Alcon RR (1999) In-situ magnetic gauging technique used at LANL-method and shock information obtained. AIP Conf Proc 505:1043–1048

    Article  ADS  Google Scholar 

  16. Sheffield SA, Dattelbam DM, Engelke R, Alcon RR, Crouze B, Robbins DL, Stahl DB, Gustavsen RL (2006) Homogeneous shock initiation process in neat and chemically sensitized nitromethane. In: Proceedings 13th international detonation symposium, Norfork, VA, Office of Naval Research, Arlington, VA, pp 401–407

    Google Scholar 

  17. Dattelbaum DM, Sheffield SA, Stahl DB, Dattelbaum AM, Trott W, Engelke R (2010) Influence of hot spot features on the initiation characteristics of heterogeneous nitromethane. In: Proceedings 14th international detonation symposium Coeur d’Alene, ID, Office of Naval Research, VA, pp 611–621

    Google Scholar 

  18. Baker LM, Hollenbach RE (1972) Laser interferometer for measuring high velocities of any reflecting surface. J Appl Phys 43(11):4669

    Article  ADS  Google Scholar 

  19. Baker L (1999) The development of the VISAR, and its use in shock compression science. AIP Conf Proc 505:11–17

    Article  ADS  Google Scholar 

  20. Bloomquist DD, Sheffield SA (1983) Optically recording interferometer for velocity measurements with subnanosecond resolution. J Appl Phys 54(4):1717–1722

    Article  ADS  Google Scholar 

  21. Dirand M, Leharrangue P, Lalle P, Le Bihan A, Morrian J, Pujols H (1977) Interferometric laser technique for accurate velocity measurement in shock wave physics. Rev Sci Inst 48:275

    Article  ADS  Google Scholar 

  22. Sheffield SA, Engelke R, Alcon RR, Gustavsen RL, Robins DL, Stahl DB, Stacy HL, Whitehead MC (2002) Particle velocity measurements of the reaction zone in nitromethane. In: Proceedings 12th international detonation symposium, San Diego, CA, Office of Naval Research, Arlington, VA, pp 159–166

    Google Scholar 

  23. Tarver CM (2005) Detonation reaction zones in condensed explosives. AIP Conf Proc 845:1026–1029

    Article  ADS  Google Scholar 

  24. Strand OT, Goosman DR, Martinez C, Whitworth TL, Kuhlow WW (2006) Compact system for high-speed velocimetry using heterodyne techniques. Rev Sci Inst 77:083108

    Article  ADS  Google Scholar 

  25. Briggs ME, Hill LG, Hull LM, Shinas MA, Dolan DH (2010) Application and principles of photon-doppler velocimetry for explosive testing. In: Proceedings 14th international detonation symposium, Coeur d’Alene, ID, Office of Naval Research, VA, pp 414–424

    Google Scholar 

  26. Gibson FC (1958) Use of an electro-optical method to determine detonation temperatures in high explosives. J Appl Phys 29(4):628–632

    Article  ADS  Google Scholar 

  27. Voskoboinikov IM, Apin AY (1960) Measurement of detonation front temperature for explosives. Dokl Akad Nauk SSSR 130(4):804–806

    Google Scholar 

  28. Dremin AN, Savrov SD (1965) Emission spectrum of a detonation wave in nitromethane. Z.P.M.T.F 1:103–105

    Google Scholar 

  29. Trofimov VS, Trojan AV (1969) Detonation luminescence spectrum of nitromethane. Fiz Gor i Vzry 5(2):280–282

    Google Scholar 

  30. Mader CL (1961) Detonation performance calculations using the Kistiakowsky-Wilson equation of state. Los Alamos Sci Lab Report LA-2613

    Google Scholar 

  31. Burton JTA, Hicks JA (1964) Detonation emissivity and temperatures in some liquid explosives. Nature 202:758–759

    Article  ADS  Google Scholar 

  32. Burton JTA, Hawkins SJ, Hooper G (1981) Detonation temperature of some liquid explosives. In: Proceedings 7th international detonation symposium, Annapolis, MD, NSWC, White Oak, MD, pp 759–767

    Google Scholar 

  33. Urtiew PA (1976) Brightness temperature of detonation wave in liquid explosives. Acta Astronaut 3:555–566

    Article  ADS  Google Scholar 

  34. Kato Y (1978) Contribution a l’etude des detonations des melanges heterogenes de nitromethane et d’aluminium. Doctor Thesis, University of Poitiers

    Google Scholar 

  35. Kato Y, Bouriannes R, Brochet C (1978) Mesure de temperature de luminance des detonations d’explosifs transparents et opaques. In: Proceedings HDP symposium CEA, Paris, pp 439–449

    Google Scholar 

  36. Kato Y, Bauer P, Brochet C, Bouriannes R (1981) Brightness temperature of detonation wave in nitromethane-teranitomethane mixtures and in gaseous mixtures at high initial pressure. In: Proceedings 7th international detonation symposium, Annapolis, MD, NSWC, White Oak, MD, pp 768–774

    Google Scholar 

  37. Kato Y, Mori N, Sakai H, Tanaka K, Sakurai T, Hikita T (1985) Detonation temperature of nitromethane and some solid high explosives. In: Proceedings 8th international detonation symposium, Albuquerque, NM, NSWC, White Oak, MD, pp 558–566

    Google Scholar 

  38. Kato Y, Mori N, Sakai H, Sakurai T, Hikita T (1989) Detonation temperature of some liquid and solid explosives. In: Proceedings 9th international detonation symposium, Portland, OR, Office of Naval Research, Arlington, MD, pp 939–946

    Google Scholar 

  39. Kato Y, Brochet C (1985) Detonation temperatures of nitromethane aluminum gels. Dyn Shock Waves Explosion Detonations Prog Astronaut Aeronaut 94:416–426

    Google Scholar 

  40. Xianchu H, Chenbung H, Shufong K (1985) The measurement of detonation temperature of condensed explosives with two colour optical fiber pyrometer. In: Proceedings 8th international detonation symposium, Albuquerque, NM, NSWC, White Oak, MD, pp 567–574

    Google Scholar 

  41. Huisheng S, Chengbung H, Shufang K, Lihong H (1989) The studying detonation temperatures of solid high explosives. In: Proceedings 9th international detonation symposium, Portland, OR, Office of Naval Research, Arlington, VA, pp 947–952

    Google Scholar 

  42. Gogulya MF, Brazhnikov MA (1993) Radiation of condensed explosives and its interpretation (Temperature measurements). In: Proceedings 10th international detonation symposium, Boston, MA, Office of Naval Research, Arlington, VA, pp 542–548

    Google Scholar 

  43. Gogulya MF, Dolgoborodov AY, Brazhnikov MA (1999) Investigation of shock and detonation waves by optical pyrometer. Int J Impact Eng 23:283–293

    Article  Google Scholar 

  44. Yoo CS, Holmes NC, Souers PC (1996) Detonation in shocked homogeneous high explosives. Mat Res Soc Symp Proc 418:397–406

    Article  Google Scholar 

  45. Yoo CS, Holmes NC, Souers PC, Wu CJ, Ree FH (2000) Anisotropic shock sensitivity and detonation temperature of pentaerythritol tetranitrate single crystal. J Appl Phys 88(1):70–75

    Article  ADS  Google Scholar 

  46. Leal B, Baudin G, Goutelle JC, Presles HN (1998) An optical pyrometer for time resolved temperature measurements in detonation wave. In: Proceedings 11th international detonation symposium, Snowmass, CO, Office of Naval Research, Arlington, VA, pp 353–361

    Google Scholar 

  47. Leal-Crouzet B (1998) Application de la pyrometrie optique a la mesure de la temperature des produits de reaction d’explosifs condenses en regime d’amorcage et de detonation. Doctor Thesis, University of Poitiers

    Google Scholar 

  48. Bouyer V, Darbord I, Herve P, Baudin G, Le Gallic C, Clement F, Chavent G (2006) Shock-to detonation transition of nitromethane: time-resolved emission spectroscopy measurements. Combust Flame 144:139–150

    Article  Google Scholar 

  49. Von Holle WG, Tarver CM (1981) Temperature measurement of shocked explosives by time-resolved infrared radiometry: a new technique to measure shock-induced reaction. In: Proceedings 7th international detonation symposium, Annapolis, MD, NSWC, White Oak, VA, pp 993–1003

    Google Scholar 

  50. Von Holle WG, WcWilliams RA (1983) Detonic research infrared radiometer with nanosecond response. Rev Sci Instrum 54(9):1218–1221

    Article  ADS  Google Scholar 

  51. Crouzet B, Partouche-Sebban D, Carion N (2003) Temperature measurements in shocked nitromethane. AIP Conf Proc 706:1253–1256

    Article  ADS  Google Scholar 

  52. Delpuech A, Menil A (1983) Raman scattering temperature measurement behind a shock wave. Shock Compression of Condensed Matter, North-Holland

    Google Scholar 

  53. Mader CL (1998) Numerical modeling of explosives and propellants. CRC Press, Boca Raton, FL

    Google Scholar 

  54. Cowperthwaite M, Zwisler WH (1976) The JCZ equations of stat for detonation products and their corporation into the tiger code. In: Proceedings 6th international detonation symposium, Colonado, CA, Office of Naval Research, Arlington, VA, pp 162–172

    Google Scholar 

  55. Tanaka K (1985) Detonation properties of high explosives calculated by revised Kihara-Hikita equation of state. In: Proceedings 8th international detonation symposium, Albuquerque, NM, NSWC, White Oak, MD, pp 548–557

    Google Scholar 

  56. Finger M, Lee E, Helm FH, Hays B, Hornig H, McGuire R, Kahara M, Guidry M (1976) The effect of elemental compositon on the detonation behavior of explosives. In: Proceedings 6th international detonation symposium, Colonado, CA, Office of Naval Research, Arlington, VA, pp 710–722

    Google Scholar 

  57. Hobbs ML, Baer MR (1992) Nonideal thermoequilibrium calculations using a large product species data base. Shock Waves 2:177–187

    Article  ADS  Google Scholar 

  58. Hobbs ML, Baer MR (1993) Calibrating the BKW-EOS with a large product species data base and measured C-J properties. In: Proceedings 10th international detonation symposium, Boston, MA, Office of Naval Research, Arlington, VA, pp 409–418

    Google Scholar 

  59. Fried L, Souers PC (1996) BKWC: an empirical BKW parametrization based on cylinder test data. Propellant, Explos, Pyrotech 21:215–223

    Article  Google Scholar 

  60. Winely JM, Duvall GE, Knudson MD, Gupta YM (2000) Equation of state and temperature measurements for shocked nitromethane. J Chem Phys 113(17):7492–7501

    Article  ADS  Google Scholar 

  61. Marsh SP (1983) LASL shock Hugoniot data. University of California Press, Berkeley, CA

    Google Scholar 

  62. Le Francois A, Baudin G, Le Gallic C, Boyce P, Coudoing JP (2002) Nanometric aluminium powder influence on the detonation efficiency of explosives. In: Proceedings of 12th international detonation symposium, San Diego, CA, Office of Naval Research, Arlington, VA, pp 22–32

    Google Scholar 

  63. Tanaka K (1983) Detonation properties of condensed explosives computed using the Kihra-Hikita-Tanaka equation of state. National Chemical Laboratory for Industry, Tsukuba Center, Japan

    Google Scholar 

  64. Hardesty DR, Kennedy JE (1977) Thermochemical estimation of explosive energy output. Combust Flame 28:45–59

    Article  Google Scholar 

  65. Gogulya MF, Dolgoborodov AY, Brazhnikov MA, Dushenok SA (1999) Shock wave initiation of liquid explosives. AIP Conf Proc 505:903–906

    Article  ADS  Google Scholar 

  66. Hantel LW, Davis WC (1970) Spherical explosions in water. In: Proceedings 5th international detonation symposium, Pasadena, CA, Office of Naval Research, Arlington, VA, pp 599–604

    Google Scholar 

  67. Cole RH (1948) Underwater explosions. Dover Publications, New York

    Book  Google Scholar 

  68. Roth J (1983) Underwater explosions in encyclopedia of explosives and related items, vol. 10. US Army Res Develop Comd, Dover, NJ U38–81

    Google Scholar 

  69. Bjarnholt G, Holmberg R (1976) Explosive expansion works in underwater detonations. In: Proceedings 6th international detonation symposium, Colonado, CA, Office of Naval Research, Arlington, VA, pp 540–550

    Google Scholar 

  70. Bjarnholt G (1980) Suggestions on standards for measurement and data evaluation in the underwater explosion tests. Propellants Explos 5:67–74

    Article  Google Scholar 

  71. Murata K (1995) Material chemical research on the application of piezoelectric fluorine-polymer to pressure sensors for underwater explosion tests. Doctor Thesis, Akita University (in Japanese)

    Google Scholar 

  72. Murata K, Takahashi K, Kato Y, Murai K (1996) Development of pressure sensors using fluoropolymer for underwater shock wave measurements. Kayaku Gakkaishi (Sci Tech Energ Mater) 57(6):252–262 (in Japanese)

    Google Scholar 

  73. Murata K, Takahashi K, Kato Y (1997) Measurement of underwater shock wave by fluoropolymer sensor. In: Proceedings 23rd international pyrotechnics seminar, pp 548–560

    Google Scholar 

  74. Murata K, Takahashi K, Kato Y (1999) Precise measurements of underwater explosion phenomena by pressure sensor using fluoropolymer. J Mater Proc Technol 85:39–42

    Article  Google Scholar 

  75. Murata K, Takahashi K, Kato Y (2002) Measurements of underwater explosion performances by pressure gauge using fluoropolymer. In: Proceedings 12th international detonation symposium, San Diego, CA, Office of Naval Research, Arlington, VA, pp 336–342

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Murata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kato, Y., Murata, K. (2023). Measurements of Shock and Detonation Phenomena. In: Kubota, S. (eds) Detonation Phenomena of Condensed Explosives. Shock Wave and High Pressure Phenomena. Springer, Singapore. https://doi.org/10.1007/978-981-19-5307-1_4

Download citation

Publish with us

Policies and ethics