Skip to main content

Bacterial Single Cell Protein: Applications, Productions, and Commercialization: Opportunities and Challenges

  • Chapter
  • First Online:
Food Microbiology Based Entrepreneurship

Abstract

During the evolution of civilization, humans generated the food from farming. Since then, his food habits including nutritional necessities have changed. Today, consumptive manners are highly diversified and cause several diseases and spoil the natural immune characteristics. Out of this background, this chapter delivers about the ‘bacterial single cell proteins their applications, productions and commercialization’. Naturally, single cell proteins are a refined or purified form of protein derived from microorganisms used by substrates under artificial conditions. They are the richest sources of proteins, vitamins, and minerals. There is numerous bacterial spp., such as Acinetobacter calcoaceticus, Achromobacter delvaevate, Aeromonas hydrophila, Bacillus subtilis, B. megaterium, Brevibacterium spp., Cellulomonas spp., Flavobacterium spp., Lactobacillus spp., Methanotrophic spp., Pseudomonas fluorescens, and Rhodopseudomonas capsulate. Bacterial SCPs are produced through semi-solid fermentation with continuous process of cell disruption, removal of nucleic acids, washing, purification, and drying. In addition to bacteria, fungi, algae, and yeasts nutritional supplements like Quorn™ (Fusarium venenatum) and Pekilo (Paecilomyces variotii) are used by global corporations. It is a growing science-based industry. Furthermore, growth of SCPs depends upon food habits and demand, and in future, it will play a dominant role in human food and health care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah, N., Abba Dandago, M., & Yunusa, A. K. (2021). Review on production of single-cell protein from food wastes. Turkish Journal of Agriculture-Food Science and Technology, 9(6), 968–974.

    Article  Google Scholar 

  • Ahmadi, A. R., Ghoorchian, H., Hajihosaini, R., & Khanifar, J. (2010). Detremination of the amount of protein and amino acids extracted from the microbial protein (SCP) of lignocellulosic wastes. Pakistan Journal of Biological Sciences, 13(8), 355–361.

    Article  Google Scholar 

  • Ali, S., Mushtaq, J., Nazir, F., & Sarfraz, H. (2017). Production and processing of single cell protein (SCP) - A review. European Journal of Pharmaceutical and Medical Research, 4, 86–94.

    Google Scholar 

  • Angiolo, M., De Chiara, M., Yue, J.-X., Irizar, A., Stenberg, S., Persson, K., Llored, A., Barre, B., Schacherer, J., Marangoni, R., Gilson, E., Warringer, J., & Liti, G. (2020). A yeast living ancestor reveals the origin of genomic introgressions. Nature, 587, 420–425.

    Article  Google Scholar 

  • Anupama, P., & Ravindra, P. (2000). Value-added food: Single cell protein. Biotechnology Advances, 18, 459–479.

    Article  Google Scholar 

  • Anupama, P., & Ravindra, P. (2001). Studies on production of single cell protein by Aspergillus niger in solid state fermentation of rice bran. Brazilian Archives of Biology and Technology, 44(1), 79–88.

    Article  Google Scholar 

  • Ardestani, F., & Alishahi, F. (2015). Optimization of single cell protein production by Aspergillus niger using Taguchi approach. Journal of Food Biosciences and Technology, 5(2), 73–79.

    Google Scholar 

  • Ashok, R. S., Nigam, P., Vanete, T., & Luciana, P. S. (2000). Bio resource technology. Journal of American Science, 16, 8–35.

    Google Scholar 

  • Ashy, M. A., & Abou-Zeid, A. (1982). Potentialities of yeasts in production of single-cell proteins (SCP). Zentrablatt fur Mikrobiologie, 137(5), 387–394.

    Article  Google Scholar 

  • Bankra, A. V., Kumar, A. R., & Zinjarde, S. S. (2009). Environmental and industrial applications of Yarrowia lipolytica. Applied Microbiology and Biotechnology, 84, 847–865.

    Article  Google Scholar 

  • Barka, A., & Blecker, C. (2016). Microalgae as a potential source of single-cell proteins: A review. Biotechnology, Agronomy, Society and Environment, 20(3), 427–436.

    Article  Google Scholar 

  • Bennett, J. W., & Klich, N. P. (2003). Mycotoxins. Clinical Microbiology Reviews, 16, 497–516.

    Article  Google Scholar 

  • Bogale, T. T. (2020). Microbial protein production from agro-industrial wastes as food and feed. American Journal of Life Sciences, 8(5), 121–126.

    Article  Google Scholar 

  • Boland, M. J., Rae, A. N., Vereijken, J. M., Meuwissen, M. P. M., Fischer, A. R. H., van Boekel, M. A. J. S., Rutherfurd, S. M., Gruppen, H., Moughan, P. J., & Hendriks, W. H. (2013). The future supply of animal-derived protein for human consumption. Trends in Food Science and Technology, 29, 62–73.

    Article  Google Scholar 

  • Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J. C., Gerds, M. L., & Hannes, W. P. (2012). Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology, 154, 87–97.

    Article  Google Scholar 

  • Bratosin, B. C., Darjan, S., & Vodnar, D. C. (2021). Single cell protein: A potential substitute in human and animal nutrition. Sustainability, 13, 9284.

    Article  Google Scholar 

  • Broach, J. R. (2012). Nutritional control of growth and development in yeast. Genetics, 192(1), 73–105.

    Article  Google Scholar 

  • Chapman, R. L. (2013). Algae: The world’s most important plants-an introduction. Mitigation and Adaptation Strategies for Global Change, 18, 5–12.

    Article  Google Scholar 

  • Chee Tan, S., & Chin Yiap, B. (2009). DNA, RNA and protein extraction: The past and the present. Journal of Biomedicine and Biotechnology, 2009, 1–10.

    Google Scholar 

  • Cooney, C. L., Rha, C., & Tannenbaum, S. R. (1980). Single-cell protein: Engineering, economics and utilization in foods. Advances in Food Research, 26, 1–52.

    Article  Google Scholar 

  • Dharmadurai, D., Lawanya, S., Saha, S., Thajuddin, N., & Annamalai, P. (2011). Production of single cell protein from pineapple waste using yeast. Innovative Romanian Food Biotechnology, 8, 1–26.

    Google Scholar 

  • Enzing, C., Ploeg, M., Barbosa, M. J., & Sijtsma, L. (2014). Microalgae-based products for food and feed sector: An outlook for Europe. European Union Publications.

    Google Scholar 

  • Fleurence, J. (1999). Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends in Food Science and Technology, 10, 25–28.

    Article  Google Scholar 

  • Food and agricultural organization of the United Nations. (2021). How to feed the world in 2050. Retrieved from https://www.fao.org/file admin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf

  • Garcia-Garibay, M., Gomez-Ruiz, L., Cruz-Guerrero, A. E., & Barzana, E. (2014). The algae. In C. A. Batt & M. L. Tortorello (Eds.), Encyclopaedia of food microbiology (2nd ed., pp. 425–430). Academic Press.

    Chapter  Google Scholar 

  • Geciova, J., Bury, D., & Jelen, P. (2002). Methods for disruption of microbial cells for potential use in the dairy industry-a review. International Dairy Journal, 12, 541–553.

    Article  Google Scholar 

  • Gervasi, T., Pellizzeri, V., Calabrese, G., Di Bella, G., Cicero, N., & Dugo, G. (2018). Production of single cell protein (SCP) from food and agricultural waste by using Saccharomyces cerevisiae. Natural Product Research, 32, 648–653.

    Article  Google Scholar 

  • Gesicka, A., Oleskowicz-Popiel, P., & Lezyk, M. (2021). Recent trends in methane to bioproduct conversion by methanotrophs. Biotechnology Advances, 53, 107861.

    Article  Google Scholar 

  • Getha, K., Vikineswary, S., & Chong, V. C. (1998). Isolation and growth of the phototrophic bacterium Rhodopseudomonas palustris strain B1 in sago-starch-processing wastewater. World Journal of Microbiology and Biotechnology, 14, 505–511.

    Article  Google Scholar 

  • Ghasemi, Y., Rasoul-Amini, S., & Morowvat, M. H. (2011). Algae for the production of SCP. In M.-T. Liong (Ed.), Biochemistry research trends. Bioprocess sciences and technology (pp. 163–184). Hauppage.

    Google Scholar 

  • Godfray, H., Charles, J., Beddington, J. R., Curte, I. R., Lawrence, H., David, L., Muir James, F., Jules, P., Sherman, R., & Thomas Sandy, M. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    Article  Google Scholar 

  • Goldberg, I. (2013). Single cell protein. In Biotechnology monographs (Vol. 1, pp. 1–188). Springer Science & Business Media.

    Google Scholar 

  • Gouveia, L., Batista, A. B., Sousa, I., Raymundo, A., & Bandarra, N. M. (2008). Microalgae in novel food products. In K. N. Papadopoulos (Ed.), Food chemistry research developments (pp. 75–111). Nova Science Publishers.

    Google Scholar 

  • Guiry Michael, D. (2012). How many species of algae are there? Journal of Phycology, 48(5), 1057–1063.

    Article  Google Scholar 

  • Hallegraeff, G. M., Anderson, D. M., Belin, C., Marie-Yasmine, D. B., Bresnan, E., Chinain, M., Enevoldsen, H., Iwataki, M., Karlson, B., McKenzie, C. H., Sunesen, I., Pitcher, G. C., Provoost, P., Richardson, A., Schweibold, L., Tester, P. A., Trainer, V. L., Yniguez, A. T., & Zingone, A. (2021). Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Communications Earth and Environment, 2, 117.

    Article  Google Scholar 

  • Hames, E. E., & Demir, T. (2015). Microbial ribonucleases (RNases): Production and application potential. World Journal of Microbiology and Biotechnology, 31, 1853–1862.

    Article  Google Scholar 

  • Hansen, C. L., & Cheong, D. Y. (2019). Agricultural waste management in food processing. In M. Kutz (Ed.), Handbook of farm, dairy and food machinery engineering (pp. 673–716). Academic Press.

    Chapter  Google Scholar 

  • Hardy, R. W., Patro, B., Pujol-Baxley, C., Marx, C. J., & Feinberg, L. (2018). Partial replacement of soybean meal with Methylobacterium extorquens single-cell protein in feeds for rainbow trout (Oncorhynchus mykiss Walbaum). Aquaculture Research, 49, 2218–2224.

    Article  Google Scholar 

  • Hedenskog, G., & Morgen. (1973). Some methods for processing of single cell protein. Biotechnology and Bioengineering, 15, 129–142.

    Article  Google Scholar 

  • Jay, J. M., Loessner, M. J., & Golden, D. A. (2005). Indicators of food microbial quality and safety. Modern Food Microbiology, 1, 473–495.

    Google Scholar 

  • Jhon, R. P., Anisha, G. S., Nampoothiri, K. M., & Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for biotechnology. Bioresource Technology, 102, 186–193.

    Article  Google Scholar 

  • Jhonson, E. A. (2013). Biotechnology of non-Saccharomyces yeasts- the ascomycetes. Applied Microbiology and Biotechnology, 97, 503–517.

    Article  Google Scholar 

  • Jones, S. W., Karpol, A., Friedman, S., Tmaru, B., & Ptracy, B. (2020). Recent advances in single cell protein use as a feed ingredient in aquaculture. Current Opinion in Biotechnology, 61, 189–197.

    Article  Google Scholar 

  • Junaid, F., Khawaja, L. A., & Ali, S. (2020). Single cell proteins as a potential meat substitute: A critical review. World Journal of Pharmaceutical Research, 9, 141–161.

    Google Scholar 

  • Kadim, I. T., Mahgoub, O., Baqir, S., Faye, B., & Purchas, R. (2015). Cultured meat from muscle stem cells: A review of challenges and prospects. Journal of Integrative Agriculture, 14, 222–233.

    Article  Google Scholar 

  • Kieliszek, M., Kot, A., Bzducha-Wrobel, A., & Blaz’ejak, S., Gientka, I. and Kurcz, A. (2017). Biotechnological use of Candida yeasts in the food industry: A review. Fungal Biology Reviews, 31, 185–198.

    Article  Google Scholar 

  • Kornochalert, N., Kantachote, D., Chaiprapat, S., & Techkarnjanaruk, S. (2014). Use of Rhodopseudomonas palustris P1 stimulated growth by fermented pineapple extract to treat latex rubber sheet wastewater to obtain single cell protein. Annals of Microbiology, 64, 1021–1032.

    Article  Google Scholar 

  • Kumar Sadh, P., Kumar, S., Chawla, P., & Singh Duhan, J. (2018). Fermentation: A boon for production of bioactive compounds by processing of food industries wastes (by-products). Molecules, 23, 2560.

    Article  Google Scholar 

  • Kunasundari, B. (2011). Isolation and recovery of microbial polyhydroxyalkanoates. Express Polymer Letters, 5(7), 620–634.

    Article  Google Scholar 

  • Kunasundari, B., Murugaiyah, V., Kaur, G., Maurer, F. H. J., & Kumar, S. (2013). Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously. PLoS ONE, 8(10), e78528.

    Article  Google Scholar 

  • Kurbanoglu, E. B., & Algur, O. F. (2002). Single-cell protein production from ram horn hydrolysate by bacteria. Bioresource Technology, 85, 125–129.

    Article  Google Scholar 

  • Le Page, M. (2016). Food made from natural gas will soon feed farm animals-and us. New Scientist, 3100, 1–2.

    Google Scholar 

  • Lee, R. E. (2008). Phycology (p. 678). University Press.

    Book  Google Scholar 

  • Leuenberger, H. G. (1972). Cultivation of Saccharomyces cerevisiae in continuous culture. II. Influence of the crabtree effect on the growth characteristics of Saccharomyces cerevisiae grown in a glucose limited chemostat. Archiv für Mikrobiologie, 83(4), 347–358.

    Article  Google Scholar 

  • Machado, I., Teixeira, J. A., & Rodriguez-Couto, S. (2013). Semi-solid-state fermentation: A promising alternative for neomycin production by the actinomycete Streptomyces fradiae. Journal of Biotechnology, 165, 195–200.

    Article  Google Scholar 

  • Mateles, R. I. (2007). Economic analysis of genetic engineering: Single cell protein. Chemical Engineering Communications, 45, 213–216.

    Article  Google Scholar 

  • Molnar, J., & Pal, M. (2020). Applying single cell protein as functional foods. Journal of Microbiology, Immunology and Biotechnology, 07, 33–35.

    Google Scholar 

  • Nagare, B., Bhambere, S., Kumar, S., Kakad, K., & Nagare, N. (2015). In situ gelling system: Smart carriers for ophthalmic drug delivery. International Journal of Pharmaceutical Research Scholars, 4, 10–23.

    Google Scholar 

  • Nangul, A., & Bhatia, R. (2013). Microorganisms: A marvelous source of single cell proteins. Journal of Microbiology, Biotechnology and Food Sciences, 3, 15–18.

    Google Scholar 

  • Nasseri, A. T., Rasoul-Amini, S., Morowvat, M. H., & Ghasemi, Y. (2011). Single cell protein: Production and process. American Journal of Food Technology, 2011, 1–14.

    Google Scholar 

  • Omar, S., & Sabry, S. (1991). Microbial biomass and protein production from whey. Journal of Islamic World Academic Sciences, 4, 170–172.

    Google Scholar 

  • Overland, M., Tauson, A. H., Shearer, K., & Skrede, A. (2010). Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals. Archives of Animal Nutrition, 64, 171–189.

    Article  Google Scholar 

  • Peden, G. C., & Bamberg, J. (2000). British petroleum and global oil, 1950-1975: The challenge of nationalism. Albion a Quarterly Journal Concerned with British Studies, 33(4), 699.

    Article  Google Scholar 

  • Pfennig, N. (1969). Rhodopseudomonas acidophila sp. a new species of the budding purple nonsulfur bacteria. Journal of Bacteriology, 99, 597–602.

    Article  Google Scholar 

  • Pihlajaniemi, V., Ellilä, S., Poikkimäki, S., Nappa, M., Rinne, M., Lantto, R., & Siika-aho, M. (2020). Comparison of pretreatments and cost-optimization of enzymatic hydrolysis for production of single cell protein from grass silage fibre. Bioresource Technology Reports, 9, 100357.

    Article  Google Scholar 

  • Raziq, A., Lateef, M., Ullah, A., & Waseem Khan, M. (2020). Single cell protein (SCP) production and potential substrates: A comprehensive review. Pure and Applied Biology, 9(3), 1743–1754.

    Article  Google Scholar 

  • Reihani, S. F., & Khosravi-Darani, K. (2019). Influencing factors on single-cell protein production by submerged fermentation: A review. Electronic Journal of Biotechnology, 37, 34–40.

    Article  Google Scholar 

  • Ritala, A., Häkkinen, S. T., Toivari, M., & Wiebe, M. G. (2017). Single cell protein-state-of-the-art, industrial landscape and patents 2001–2016. Frontiers in Microbiology, 8, 2009.

    Article  Google Scholar 

  • Royer, J. C., & Nakas, J. P. (1983). Potential substrates for single cell protein production. In W. Cote (Ed.), Biomass utilization (pp. 443–459). Springer.

    Chapter  Google Scholar 

  • Serrano, R., Martin, H., Casamayor, A., & Arino, J. (2006). Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. Journal of Biological Chemistry, 281, 39785–39795.

    Article  Google Scholar 

  • Sharif, M., Zafar, M. H., Aqib, A. I., Saeed, M., Farag, M. R., & Alagawany, M. (2021). Single cell protein: Sources, mechanisms of production, nutritional value and its uses in aquaculture nutrition. Aquaculture, 531, 735885.

    Article  Google Scholar 

  • Spalvins, K., Ivanovs, K., & Blumberga, D. (2018). Single cell protein production from waste biomass: Review of various agricultural by-products. Agronomy Research, 16, 1493–1508.

    Google Scholar 

  • Srividya, A. R., Vishnuvarthan, V. J., Murugappan, M., & Dahake, P. G. (2013). Single cell protein-a review. International Journal of Pharmaceutical Research Scholars, 2, 472–485.

    Google Scholar 

  • Steels, E. L., Learmonth, R. P., & Watson, K. (1994). Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology, 140, 569–576.

    Article  Google Scholar 

  • Stein, L. Y., Yoon, S., Semrau, J. D., DiSpirito, A. A., Crombie, A., Murrell, J. C., Vuilleumier, S., Kalyuzhnaya, M. G., Op den Camp, H. J. M., Bringel, F., Bruce, D., Cheng, J. F., Copeland, A., Goodwin, L., Han, S., Hauser, L., Jetten, M. S. M., Lajus, A., Land, M. L., Lapidus, A., Lucas, S., Medigue, C., Pitluck, S., Woyke, T., Zeytun, A., & Klotz, M. G. (2010). Genome sequence of the obligate methanotroph Methylosinus trichosporium. Journal of Bacteriology, 192(24), 6497–6498.

    Article  Google Scholar 

  • Suman, G., Nupur, M., Anuradha, S., & Pradeep, B. (2015). Single cell protein production: A review. International Journal of Current Microbiology and Applied Sciences, 4, 251–262.

    Google Scholar 

  • Turnbull, W. H., Leeds, A. R., & Edwards, G. D. (1992). Mycoprotein reduces blood lipids in free-living subjects. American Journal of Clinical Nutrition, 55, 415–419.

    Article  Google Scholar 

  • Uckun Kiran, E., Trzcinski, A. P., & Liu, P. (2015). Platform chemical production from food wastes using a biorefinery concept. Journal of Chemical Technology and Biotechnology, 90(8), 1364–1379.

    Article  Google Scholar 

  • Ugalde, U. O., & Castrillo, J. I. (2002). Single cell proteins from fungi and yeasts. In G. G. Khachatourians & D. K. B. T.-A. M. Arora (Eds.), Agriculture and food production (pp. 123–149). Elsevier.

    Chapter  Google Scholar 

  • Ukaegbu-Obi, K. M. (2016). Single cell protein: A resort to global protein challenge and waste management. Journal of Microbiology and Microbial Technology, 1(1), 1–5.

    Google Scholar 

  • Valentino, M. J., Ganado, L., & Undan, J. R. (2016). Single cell protein potential of endophytic fungi associated with bamboo using rice bran as substrate. Advances in Applied Science Research, 7, 68–72.

    Google Scholar 

  • Vibha, A., & Sinha, A. (2005). Production of soluble crude protein using cellulolytic fungi on rice stubble as substrate under waste program management. Mycobiology, 33(3), 147–149.

    Article  Google Scholar 

  • Vigani, M., Parisi, C., Rodríguez-Cerezo, E., Barbosa, M. J., Sijtsma, L., Ploeg, M., & Enzing, C. (2015). Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends in Food Science and Technology, 42, 81–92.

    Article  Google Scholar 

  • Voltolina, D., Gomez-Villa, H., & Correa, G. (2005). Nitrogen removal and recycling by Scenedesmus obliquus in semicontinuous cultures using artificial waste water and a simulated light and temperature cycle. Bioresource Technology, 96, 359–362.

    Article  Google Scholar 

  • Waldron, C., & Lacroute, F. (1975). Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. Journal of Bacteriology, 122, 855–886.

    Article  Google Scholar 

  • Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., Smith, A. G., Camire, M. E., & Brawley, S. H. (2017). Algae as nutritional and functional food sources: Revisiting our understanding. Journal of Applied Phycology, 29(2), 949–982.

    Article  Google Scholar 

  • Wiebe, M. G. (2002). Myco-protein from Fusarium venenatum: A well-established product for human consumption. Applied Microbiology and Biotechnology, 58, 421–427.

    Article  Google Scholar 

  • Wongputtisin, P., Khanongnuch, C., Kongbuntad, W., Niamsup, P., Lumyong, S., & Sarkar, P. K. (2014). Use of Bacillus subtilis isolates from Tuanao towards nutritional improvement of soya bean hull for monogastric feed application. Letters in Applied Microbiology, 59, 328–333.

    Article  Google Scholar 

  • Wu, G. (2009). Amino acids: Metabolism, functions and nutrition. Amino Acids, 37, 1–17.

    Article  Google Scholar 

  • Wu, G., Fanzo, J., Miller, D. D., Pingali, P., Post, M., Steiner, J. L., & Thalacker-Mercer, A. E. (2014). Production and supply of high-quality food protein for human consumption: Sustainability, challenges and innovations. Annals of the New York Academy of Sciences, 1321, 1–19.

    Article  Google Scholar 

  • Xie, D., Jackson, E. N., & Zhu, Q. (2015). Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: From fundamental research to commercial production. Applied Microbiology and Biotechnology, 99, 1599–1610.

    Article  Google Scholar 

  • Yunus, F. N., Nadeem, M., & Rashid, F. (2015). Single-cell protein production through microbial conversion of lignocellulosic residue (wheat bran) for animal feed. Journal of the Institute of Brewing, 121, 553–557.

    Article  Google Scholar 

  • Zamani, A., Khajavi, M., Nazarpak, M. H., & Gisbert, E. (2020). Evaluation of a bacterial single-cell protein in compound diets for rainbow trout (Oncorhynchus mykiss) fry as an alternative protein source. Animals, 10(1676), 1–18.

    Google Scholar 

  • Zhou, Y. M., Chen, Y. P., Guo, J. S., Shen, Y., Yan, P., & Yang, J. X. (2019). Recycling of orange waste for single cell protein production and the synergistic and antagonistic effects on production quality. Journal of Cleaner Production, 213, 384–392.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank to Department of Plant Pathology, SRSIAT, Vedasandur, India & Department of Plant Pathology, CPPS, TNAU, Coimbatore, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murali Sankar, P. et al. (2023). Bacterial Single Cell Protein: Applications, Productions, and Commercialization: Opportunities and Challenges. In: Amaresan, N., Dharumadurai, D., Babalola, O.O. (eds) Food Microbiology Based Entrepreneurship. Springer, Singapore. https://doi.org/10.1007/978-981-19-5041-4_9

Download citation

Publish with us

Policies and ethics